4/6/2014 Work Management APIs: Putting the Pieces Together

B print | close

Work Management APIs: Putting the Pieces Together

Carsten Flensburg
Mon, 10/28/2013 - 4:21pm

Support all list actions and retrieve and identify messages

In previous APIs by Example columns, I've thoroughly covered the Work Management APIs.
To add a practical aspect to the explanations, these articles addressed many new CL
commands that deal with job information and management. In this article, I'll put all these
pieces together to present an updated version of the Work with Jobs (WRKJOBS) command,
which in thisincarnation provides access to a whole suite of native as well as APIs by Example
job commands.

In addition, I'll briefly discussthe programming technique involved in supporting more commandsin a User
Interface Manager (UIM) list panel than the panel’s list options space permits. I'll also present the Work
Management APIsupport introduced in recent releases for identifying and handling jobs in a message wait
state. Displaying and optionally replying tothe message require a bit of coding on your part, but I've included
an Additional Message Information panel torelieve most of that burden (for compilation instructions, see the
“How to Compile” section below).

Supporting All List Actions

The number of job commands you can access from the Work with Jobs list panel greatly exceeds the space
available for the list options in the display panel and, therefore, requires a special technique to support all list
option commands and functions. In contrast with the F24=More keys functionality, which the UIM handles
automatically, there’s no corresponding UIM support for F23=More options. The method I'll present in this
article is based on examples and discussions of the approach contributed by Ed Fischel and the late Simon
Coulter, both former IBM associates.

UIM panel groups easily support conditional panel elements such as the option list and associated list actions.
You simply specify the name of the condition, declare a condition statement, and indicate the condition name
for the condition tag on the list action keyword. Consequently, the list action will appear and be accessible only
when the UIM evaluates the condition to be true or not when it displays the panel. A UIM truth table defines
certain conditions to be mutually exclusive, letting the UIM avoid reserving panel space for all defined list
actions simultaneously.

The challenge in making the More options dialog work is keeping all list actions available and active, because
the panel displays only some of the list actions. To achieve this, you define all list actions for each condition but
specify a text attribute only for those list actions that are to appear in the respective list action sets. Web Figure
1 shows sample panel group source code that demonstrates this technique. Note the following elements:

e The MOROPT variable keeps track of the current state (i.e., which of the two option lists to show). This
variable correlates with the CTLRCD parameter structure that communicates between the UIM exit
program and the panel group when the value of the MOROPT variable is set.

e The OPTo1 and OPTo2 conditions, which the example defines in the condition statements following the
variable and record declaration, are both based on the current value of the MOROPT variable.

e The PNLTT truth table declares that the OPTo1 and OPTo2 conditions are mutually exclusive.

e Twoidentical sets of UIM list actions are defined, with each set conditioned by OPTo1 and OPTo2,
respectively.

The first set defines the text attribute only for the twolist actions that will display when the OPTo1 condition
evaluates totrue; the two subsequent list actions have blank text attributes. Conversely, on the second list
action set, which the OPTo2 condition controls, the first list actions have blank text attributes and the two final
list actions include a text attribute.

http://iprodevel oper.com/print/application-development/wor k-manag ement-apis-putting - pieces-tog ether 1/6

4/6/2014 Work Management APIs: Putting the Pieces Together

This configuration results in the UIM allowing all list actions to alway s be responsive while displaying only a
subset of list options in the list panel at any given time. In the panel group source code, I define F23 as the More
options key with an action of calling the UIM exit program. Figure 1 shows the partial source code of that exit
program and revealsthat toggling the list panel options requires just a little work.

Pressing the F23 key passes control to the exit program, which simply retrieves the CTLRCD parameter
structure and the MOROPT variable subfield. The value of the MOROPT variable then increases by one. If the
new value exceeds the maximum value of the MOROPT variable, the value resets to zero. Next, the CTLRCD
parameter structure is passed back tothe panel group and the MOROPT variable’s new value causes the
display ed list panel options to change, conforming to the associated conditions evaluating totrue and not true,
respectively.

The maximum value of the MOROPT variable reflects the number of list action sets. In this case, there are two:
the first list action set is conditioned by a value of zero; the second is conditioned by a value of one, defining the
maximum value in the example in Web Figure 1. This approach lets you easily increase the number of list
action sets, given the requirement. Note that if you have more than twolist action sets, to reduce complexity
you can specify a full set of unconditioned list actions without text and then condition only the list actions that
have a text attribute. When calculating the panel layout, the UIM com piler doesn’t take into consideration the
list actions without text.

Retrieving and Indentifying Messages

Some job-related CL commands such as Work with User Jobs (WRKUSRJOB), Work with Submitted Jobs
(WRKSBMJOB), and Work with Active Jobs (WRKACTJOB) let you reply to pending inquiry messages for jobs in
a message wait status. If you want toreplicate this support when designing y our own API-based job commands,
you might find it interesting tolearn that IBM has enhanced the Open List of Jobs (QGYOLJOB) API, the
Retrieve Job Information (QUSRJOBI) API, and the Retrieve Thread Attribute (QWTRTVTA) APItoinclude the
information necessary toidentify and retrieve the inquiry message in question.

The API documentation refers tothe job attribute of particular interest in this context as Message reply. This
attribute defines whether the job is waiting for a reply to a specific message. The field applies only when the
active job status or active job status for job ending is MSGW. The possible values include:

e 0:Thejob currently is not in message wait status.
e 1:Thejobiswaiting for a reply toa message.
e 2:Thejob is not waiting for a reply toa message.

In plain English, this means the job either isn’t in a message wait status (0) or isin a message wait status and is
either waiting for a reply to a specific message (1) or waiting for a message toarrive at a message queue asa
result of issuing a receive message command or APIagainst that message queue (2). In the event that the
message reply attribute hasthe value 1, the following job attributes let you identify and retrieve the actual
inquiry message:

e Message key: The key of the message that the active job is waiting for a reply to

¢ Message queue name: The name of the message queue that the active job is waiting toreceive a message
from

e Message queue library name: The name of the library that contains the message queue

e Library ASPdevice name: The name of the auxiliary storage pool (ASP) device description for the ASP
containing the library

These job attributes provide the information necessary toretrieve the message identified by the message key
from the message queue defined by the ASP, library, and message queue name. Typically, you use the Receive
Nonprogram Message (QMHRCVM) API to perform this task. Once you’ve retrieved the message details, y ou
format the message text in accordance with the display-panel size and the message-formatting instructions
embedded in the message’s second-level help text. The latter information is available through the Retrieve
Message (QMHRTVM) APL

You must provide a reply line for the user toinput the reply tothe inquiry message. When input, thisreply is
forwarded to the waiting message queue via the Send Reply Message (QMHSNDRM) APL The Additional Message
Information (AMI) module—included with the accompanying code bundle and ready for you to use in your own

http://iprodevel oper.com/print/application-development/wor k-manag ement-apis-putting - pieces-tog ether 2/6

4/6/2014 Work Management APIs: Putting the Pieces Together

utilities—contains the entire message-formatting and reply functionality. Calling the AMImodule requires only

two parameters: the qualified name of the message queue and the message key.

WRKJOBS Wrap-up

That’s it for this discussion of WRKJOBS command basics. Toexamine what the WRKJOBS command prompt

looks like, take a look at Figure 2.

Figure 2: Work with Jobs (WRKJOBS) command prom pt

Work with Jobs (WRKJOBS)

Type choices, press Enter.

Job name *ALL Name, generic*, *ALL..

User name . . . « v « o o 4 o . *ALL Name, generic*, *ALL..

Job status L .. *ACTIVE *ACTIVE, *JOBQ, *OUTQ...

Job type *ALL *ALL, *AUTO, *BATCH...
Current user *NOCHK Name, *NOCHK

Active status *ALL *ALL, *CNDW, *DEQA, *DEQW...
Completion status *ALL *ALL, *NORMAL, *ABNORMAL

You can narrow the selection of jobs primarily based on generic job name, generic user name, job status, and job
type. You can further qualify active jobs by current user and active status and include completed jobs with a
completion status of either normal or abnormal. Running the WRKJOBS command for user QTCP on my sy stem

produces the list panel in Figure 3.

Figure 3: Work with Jobs (WRKJOBS) list panel

Work with Jobs WYNDHAMW
11-08-13 15:16:52
Type options, press Enter.
2=Change 3=Hold 4=End 5=Work with 6=Release 7=Display message
8=Work with spooled files 10=Display job log 12=Work with user jobs...

Current Function/
Opt Job User Job date Type ---Status--- Completion

QTPPPCTL QTCP 14-08-13 BCH ACTIVE CNDW PGM-QTOCPPPCTL
QTSMTPBRSR QTCP 14-08-13 BCH ACTIVE DEQW

QTSMTPBRCL QTCP 14-08-13 BCH ACTIVE DEQW

QTSMTPCLTD QTCP 14-08-13 BCH ACTIVE DEQW

QSNMPSA QTCP 14-08-13 BCH ACTIVE DEQW PGM-QNMSARTR
QTMSNMPRCV QTCP 14-08-13 BCH ACTIVE TIMW PGM-QTOSRCVR
QTSMTPSRVP QTCP 14-08-13 BCH ACTIVE PSRW

QTPOP00034 QTCP 14-08-13 BCH ACTIVE DEQW

QTPOP00034 QTCP 14-08-13 BCH ACTIVE DEQW

QTPOP00033 QTCP 14-08-13 BCH ACTIVE DEQW

More. ..
Parameters or command
===>
F3=Exit F4=Prompt F5=Refresh Fo=Submit job F9=Retrieve Fll=View 2
Fl2=Cancel F21=Print list F22=Work with active Jjobs F23=More options

The WRKJOBS list panel offers a wide range of job commands—some of IBM origin and others I've introduced as

part of earlier APIs by Example articles. The following list details the latter:

e Display Job Open Files (DSPJOBOPNF)

e Display Job SQL Information (DSPJOBSQLI)
e Display Job Log Message (DSPLOGMSG)

e Display Job IP Address (DSPJOBIPA)

e Display Job Screen (DSPJOBSCN)

e Run Job Command (RUNJOBCMD)

e Additional Message Information Panel

In addition to displaying and working with the many job commands available in the panel option list, you can
use the F21 key to print the displayed job list and select F22 torun the WRKACTJOB command for the job name
that you point the cursor at. You’ll find detailed documentation for the WRKJOBS command and list panel in

http://iprodevel oper.com/print/application-development/wor k-manag ement-apis-putting - pieces-tog ether

3/6

4/6/2014 Work Management APIs: Putting the Pieces Together

the accompanying help text panel group by pressing F1. For more information about the CLcommands and
utilities discussed here, check out the links in the “Find Out More” section.

Find Out More
Articles at iProDeveloper.com

"APIs at Work—with Jobs"

"APIs by Example: Displaying Job Client IP Address and Job Log Information Using APIs"

"APIs by Example: Hidden Job SOL Information Exposed by Retrieve Job Information API"

"APIs by Example: How to Display the Screen of Another Interactive Job"

"APIs by Example: List Open Files API, and the Display Job Open Files Command"

"APIs by Example: Message Handling APIs & Additional Message Info Support”

"APIs by Example: Use a Work Management APIto List Server Jobs"

"APIs by Example: Work with I,AN Printers Command"

"Carsten’s Corner—New Work with Remote Qutput Queue Command"

"Sending Commands to Another Job - Revisited for i5/0S V5R4"

"Use APIs to Monitor and Troubleshoot TCP/IP Processing Jobs"

IBMi 7.1 Information Center documentation

Open List of Jobs (QGYOLJOB) API

Retrieve Job Information (QUSRJOBI) API

Retrieve Thread Attribute (QWTRTVTA) API

List Open Files (QDMLOPNF) API

Change Job Interrupt Status (QWCCJITP) API

Call Job Interrupt Program (QWCJBITP) API

Open List of Job Log Messages (QGYOLJBL) API

Receive Nonprogram Message (QMHRCVM) API

Retrieve Message (QMHRTVM) API

Send Program Message (QMHSNDPM) API

Send Reply Message (QMHSNDRM) API

How to Compile

Below you’ll find instructions for creating the Work with Jobs (WRKJOBS) command as well as all its associated
commands and objects. The following sources are included with the code download available with this article:

CBX232—RPGLE: Work with Jobs—CCP
CBX232E—RPGLE: Work with Jobs—UIM General Exit Program
CBX232H—PNLGRP: Work with Jobs—Help

CBX232L—RPGLE: Work with Jobs—UIM List Exit Program

http://iprodevel oper.com/print/application-development/wor k-manag ement-apis-putting - pieces-tog ether

4/6

4/6/2014 Work Management APIs: Putting the Pieces Together
CBX232P—PNLGRP: Work with Jobs—Panel Group

CBX232V—RPGLE: Work with Jobs—VCP

CBX232X—CMD: Work with Jobs

CBX232M—CLP: Work with Jobs—Build command

CBX209—RPGLE: Additional Message Information

CBX209E—RPGLE: Additional Message Information—UIM Exit Program
CBX209H—PNLGRP: Additional Message Information—Help

CBX209P—PNLGRP: Additional Message Information—Panel Group

CBX227—RPGLE: Display Job Open Files—CPP
CBX227E—RPGLE: Display Job Open Files—UIM Exit Program
CBX227H—PNLGRP: Display Job Open Files—Help
CBX227P—PNLGRP: Display Job Open Files—Panel Group
CBX227X—CMD: Display Job Open Files

CBX227M—CLP: Display Job Open Files—Build command

CBX228—RPGLE: Display Job SQL Information—CPP
CBX228E—RPGLE: Display Job SQL Information—UIM Exit Program
CBX228H—PNLGRP: Display Job SQL Information—Help
CBX228P—PNLGRP: Display Job SQL Information—Panel Group
CBX228X—CMD: Display Job SQL Information

CBX228M—CLP: Display Job SQL Information—Build command

CBX230—RPGLE: Display Job Log Message
CBX230H—PNLGRP: Display Job Log Message—Help
CBX230X—CMD: Display Job Log Message

CBX230M—CLP: Display Job Log Message—Build command

CBX231—RPGLE: Display Job IP Address
CBX231H—PNLGRP: Display Job IP Address—Help
CBX231X—CMD: Display Job IP Address

CBX231M—CLP: Display Job IP Address—Build command

http://iprodevel oper.com/print/application-development/wor k-manag ement-apis-putting - pieces-tog ether 5/6

4/6/2014 Work Management APIs: Putting the Pieces Together
CBX256 H—PNLGRP: Display Job Screen—Help

CBX256V—RPGLE: Display Job Screen—VCP
CBX256X—CMD: Display Job Screen
CBX2561—RPGLE: Display Job Screen—CPP
CBX2562—RPGLE: Display Job Screen—Exit Program

CBX256M—CLP: Display Job Screen—Build command

CBX975H—PNLGRP: Run Job Command-Help
CBX975X—CMD: Run Job Command
CBX9751—RPGLE: Run Job Command—-CPP
CBX9752—RPGLE: Run Job Command—Exit Program

CBX975M—CLP: Run Job Command-Build command

CBX264M—CLP: Work with Jobs—Build commands

To create the above exit programs, compile and run the CBX264M CL program, following the instructions in the
source header. You’ll also find compilation instructionsin the respective source headers of the individual
sources.

Source URL: http://iprodev eloper.com /application-dev elopment/work-management-apis-putting-pieces-
together

http://iprodevel oper.com/print/application-development/wor k-manag ement-apis-putting - pieces-tog ether 6/6

