
print | close

APIs by Example: List Open Files API, and the Display Job
Open Files Command

System iNetwork Programming Tips Newsletter

Carsten Flensburg

Carsten Flensburg

Thu, 03/24/2011 (All day)

IBM initially conceived APIs to provide programmers a well-documented and well-

structured interface to system information that in the pre-API days was obtained by

parsing CL command spooled file output or by calling IBM system internal

programs directly. In addition to APIs' versatility and standardized interfaces, they

also often offer much more information and details than their original CL command

counterpart.

Today's APIs by Example demonstrates an API that in itself exposes more information about a job's

open files than is available elsewhere. At the same time, true to the concept of a programming

interface, the API approach lets you further enhance the functionality associated with the resulting

Display Job Open Files (DSPJOBOPNF) CL command, compared to the corresponding native

offering. The List Open Files (QDMLOPNF) API delivers the core command functionality of listing a

specified job's currently open file objects.

The IBM CL commands Display Job (DSPJOB) and Work with Job (WRKJOB) both support an

OPTION(*OPNF), which, in the words of the associated help text, performs a similar service: "Files

that are open for the job and the status of system and user files are shown." Programmers often refer

to these commands and this option to examine and verify the files that their programs have opened,

and the type of operation being performed against these files.

You can see the relative record numbers of the file records as they're being processed, and you can

verify the libraries of the files opened. For anyone who has ever enjoyed the outcome of testing an

update program against a production file, the latter is a very useful capability. There's a column

specifying the number of I/O operations performed to the respective open files, and information

about activation scope and activation groups. For many programming tasks, the DSPJOB or

WRKJOB command's Display Open Files panel will help you get your job done. But in some

situations, this panel has shortcomings.

There's no specification of the individual types of output being performed: write, read, write/read,

and other I/O. You only see the accumulated result in a single column. The limited column size for

the I/O count as well as the relative record number at some point causes overflow for jobs

performing either excessive I/O for longer periods of time or processing large files. Using the

function key F5 to refresh the screen after paging down one or more pages immediately takes you

back to page 1. You have no way of limiting the list panel to include only particular files, libraries,

types of files, or I/O.

As upcoming issues of this column will further demonstrate, you have the happy option as an API

programmer, and given the presence of an appropriate API, to build the tools you need in order to

make your job a little easier and the outcome of your efforts a little better. For now, since this also

Page 1 of 10APIs by Example: List Open Files API, and the Display Job Open Files Command

02-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-list-open-files-api-and...

presents the initial specifications for the CPP, let me show you what the DSPJOBOPNF command

prompt looks like:

 Display Job Open Files (DSPJOBOPNF)

 Type choices, press Enter.

 Job name * Name, *

 User Name

 Number 000000-999999

 File name *ALL Name, generic*,

*ALL

 Library *ALL Name, generic*,

*ALL

 File type *ALL *ALL, *BSCF,

*BSCF, *CMNF...

 + for more values

 I/O type *ALL *ALL, *ANYIO,

*READ...

 + for more values

 Output * *, *PRINT

The command's primary parameter, the job for which to list the open files, is the only one directly

supported by the QDMLOPNF API. The remaining parameters enabling you to qualify which files to

include in the open files list are all enforced by the CPP. You can specify a file name or a generic file

name, a library name or a generic library name, and any number of file types and I/O types in order

to list only a specific selection of open files. The command and all its parameters are documented in

more detail in the accompanying online help text panel group.

Here's the QDMLOPNF API parameter list in its entirety:

 Required Parameter Group:

 1 Receiver variable Output Char(*)

 2 Length of receiver variable Input Binary(4)

 3 Format of receiver information Input Char(8)

 4 Job identification information Input Char(*)

 5 Format of job identification info Input Char(8)

 6 Error code I/O Char(*)

Page 2 of 10APIs by Example: List Open Files API, and the Display Job Open Files Command

02-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-list-open-files-api-and...

The first and second parameters define the program variable available for the QDMLOPNF API to

return the open file information and the size of this variable, respectively. Since any arbitrary

number of files may be open when the API is called, it's difficult to predict the exact amount of

storage required to hold all available open file information. I therefore dynamically allocate storage

for the API receiver variable. Initially, I allocate enough storage to cater for approximately 400 open

files. This would cover the storage requirement in most cases. Should it not suffice, however, I repeat

the API call following a reallocation of storage based on the actual amount of open file information

available. This approach translates to the following piece of RPG/IV code:

 /Free

 ApiRcvSiz = 65535;

 pOPNF0100 = %Alloc(ApiRcvSiz);

 OPNF0100.BytAvl = *Zero;

 DoU OPNF0100.BytAvl *Zero;

 If OPNF0100.BytAvl > ApiRcvSiz;

 ApiRcvSiz = OPNF0100.BytAvl;

 pOPNF0100 = %ReAlloc(pOPNF0100: ApiRcvSiz);

 EndIf;

 LstOpnF(OPNF0100

 : ApiRcvSiz

 : 'OPNF0100'

 : JIDF0100

 : 'JIDF0100'

 : ERRC0100

);

 EndDo;

 /End-Free

The QDMLOPNF API call is repeated until the size of the open file information is less than the size of

the receiver variable (or an error condition is signaled in the API error data structure). Prior to

subsequent API calls, the required amount of storage is reallocated. The dynamically allocated

storage remains allocated until explicitly deallocated or the activation group in which the program

runs. One method of ensuring that allocated storage is released properly irrespective of how a

program ends is to run a program dynamically allocating storage in a *NEW activation group.

This approach might, however, in some contexts constitute a bad practice due to the overhead

related to creating new activation groups. So another method of protecting against storage not being

released is to, for example, register a termination exit procedure. A termination exit procedure is

called by the system runtime whenever a program ends due to anything other than a normal return.

The registered exit procedure then is capable of releasing allocated storage, or performing any other

cleanup procedure required. Note that the system value QENDJOBLMT controls the amount of time

available to complete end job processing, in case job termination is the cause of the program

invocation being ended.

The DSPJOBOPNF CPP therefore initially registers the TrmPgm() procedure. The TrmPgm()

procedure contains all the operations that I want to be sure are run before the program for which it is

Page 3 of 10APIs by Example: List Open Files API, and the Display Job Open Files Command

02-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-list-open-files-api-and...

registered ends. If the CPP ends normally, the final operations performed by the program are to

deregister the TrmPgm() termination exit procedure as a cleanup precaution and then execute the

TrmPgm() procedure inline instead. The code snippets below outline the steps involved in

performing this type of program termination control:

 **-- Register termination exit:

 D CeeRtx Pr ExtProc('CEERTX')

 D procedure * ProcPtr Const

 D token * Options(*Omit)

 D fb 12a Options(*Omit)

 **-- Unregister termination exit:

 D CeeUtx Pr ExtProc('CEEUTX')

 D procedure * ProcPtr Const

 D fb 12a Options(*Omit)

 /Free

 CeeRtx(%Paddr(TrmPgm): *Omit: *Omit);

 ...

 CeeUtx(%Paddr(TrmPgm): *Omit);

 TrmPgm(*Null);

 /End-Free

 **-- Terminate program:

 P TrmPgm B

 D Pi

 D pPtr * Const

 /Free

 CloApp(UIM.AppHdl: CLO_NORM: ERRC0100);

 DeAlloc(n) pOPNF0100;

 *InLr = *On;

 Return;

 /End-Free

 P TrmPgm E

The QDMLOPNF API's third parameter specifies the format in which you want the API to return the

open file information. Currently only a single format, OPNF0100, is offered. A similar limited range

of options exists for the fourth parameter, the Job identification information pointing the API to the

job for which to produce the open file listing. Again, a single format is available, the JIDF0100

format, the name of which must be specified as the fifth parameter when you call the QDMLOPNF

API. Here's the layout of the JIDF0100 parameter structure using an offset base of 1:

Page 4 of 10APIs by Example: List Open Files API, and the Display Job Open Files Command

02-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-list-open-files-api-and...

 Offset Field Data type

 1 Job name Char(10)

 11 User name Char(10)

 21 Job number Char(6)

 27 Internal job identifier Char(16)

 43 Reserved Char(2)

 45 Thread indicator Binary(4)

 49 Thread identifier Char(8)

The JIDF0100 format is used by a number of work management APIs to let you identify the scope of

the job information to return right down to individual thread level. You identify the job by job name,

user name, and job number, or by the internal job identifier. The latter is a system internal identifier

of any given job that is returned by other APIs in order to allow subsequent API calls to locate the job

faster than possible with the qualified job name. That's all straightforward. Getting the thread

indicator right, however, requires a closer look at the description of this parameter:

Thread indicator

 The value that is used to specify the thread within the job for

which information is

 to be retrieved.

 The following values are supported:

 0 The value in the thread identifier field should be used to locate

the thread.

 1 Information should be retrieved for the thread in which this

program is running.

 The combination of the internal job identifier, job name, job

number, and user

 name fields also must identify the job containing the current

thread.

 2 Information should be retrieved for the initial thread of the

identified job.

 3 Information should be retrieved for all threads within the

specified job.

Specifying a zero for the thread indicator parameter causes the QDMLOPNF API to return open file

information only for the thread identified by the thread identifier parameter. Specifying the value

one retrieves information only for the job calling the QDMLOPNF API. Entering job identification

values identifying another job than the current one causes the API call to fail. Values two and three

both support current as well as other jobs, but the value two only returns information for the

specified job's initial thread. In this case, I want to see all open files associated with any given job, so

I specify the value three for the thread indicator parameter.

As for the sixth and final API parameter, the API error data structure format ERRC0100, this has

been demonstrated and discussed to great extent in other, earlier articles. I've included links to

articles discussing the concept of the API error data structure as well as dynamic memory allocation

at the end of this article, in case you want to read up on the details and specifics. In the same section,

Page 5 of 10APIs by Example: List Open Files API, and the Display Job Open Files Command

02-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-list-open-files-api-and...

you'll also find a number of links to IBM documentation explaining some of the other concepts

discussed or involved in today's article or code.

Now, on to the outcome of our efforts so far. The Display Open Files panel presented by the

DSPJOBOPNF command mainly differs from the original version in that the primary list view panel

showing the open file I/O information has been divided into two panels. The initial panel displayed

identifies the open file and includes information about the file type, member/device name, and

relative record number:

 Display Open Files

 WYNDHAMW

 11-03-11

 15:48:40

 Job: QPADEV0007 User: CARSTEN Number: 966052

 Open data paths : 4

 Member/ Record File ---Open----

 Relative

 File Library Device Format Type Opt Shr Nbr

 Record

 QSN132 QSYS CF101HOA USRRCD DSP IO NO

 QDUODSPF QPDA CF101HOA MSGSFC DSP IO NO

 QDUI132 QSYS CF101HOA USRRCD DSP IO NO

 QAOKL02A QUSRSYS QAOKL02A WOSFMT01 LGL I YES 1

 60

 Bottom

 Press Enter to continue.

 F3=Exit F5=Refresh F11=Display I/O details F12=Cancel

F24=More keys

Page 6 of 10APIs by Example: List Open Files API, and the Display Job Open Files Command

02-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-list-open-files-api-and...

The function keys let you toggle the list views, execute the Work with Job (WRKJOB) command, and

position the open files list to top and bottom, respectively. Function key F10 lets you move the list

record selected with the cursor to the top of the panel. Pressing function key F5 maintains the list's

current position based on the top file's ordinal number in the list. This implies that if files preceding

the current top file have been opened or closed since the list was last built, the top file may

consequently change. Under most circumstances, however, the top file remains the same following a

list refresh.

The second open files list view contains the detailed open file I/O information:

 Display Open Files

 WYNDHAMW

 11-03-11

 15:56:56

 Job: QPADEV0007 User: CARSTEN Number: 966052

 Open data paths : 4

 --------------------I/O Count--------------

 File Library Read Write Write/Read

Other I/O

 QSN132 QSYS 0 0 4

 1

 QDUODSPF QPDA 73 409 1

 1

 QDUI132 QSYS 0 0 12

 1

 QAOKL02A QUSRSYS 1 0 0

 0

 Bottom

 Press Enter to continue.

 F10=Move to top F16=Job menu F17=Top F18=Bottom F24=More

keys

Page 7 of 10APIs by Example: List Open Files API, and the Display Job Open Files Command

02-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-list-open-files-api-and...

As the above open files list panel example demonstrates, for each open file listed, the following I/O

event types are counted individually:

Read The number of successful read operations. If record blocking

is not in

 effect for the file, this is the number of records. If

record blocking is

 in effect for the file, this is the number of record blocks.

A read in this

 context defines the transfer of a record or a block of

records from a file

 to a program. The data is made available to the program once

the read has

 been successfully completed.

Write The number of successful write operations. If record

blocking is not in

 effect for the file, this is the number of records. If

record blocking is

 in effect for the file, this is the number of record blocks.

A write in

 this context defines the transfer of a record or a block of

records from a

 program to a file.

Write/ The number of successful write/read operations. A write/read

in this

Read context defines the combination of write and read as one

single operation.

 An example of a combined write/read operation is a write

performed to a

 display file format, which then immediately after the

completed write

 operation waits for an input operation being performed to

the same

 display file format.

Other The number of successful I/O operations of the following

types:

I/O o update

 o delete

 o change end-of-data

 o force end-of-data

 o force end-of-volume

 o release record lock

Page 8 of 10APIs by Example: List Open Files API, and the Display Job Open Files Command

02-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-list-open-files-api-and...

 o acquire/release program device

As I mentioned earlier, you can use the function key F5 to refresh the screen and thereby the I/O

count. The DSPJOBOPNF command's third list view panel essentially displays the same activation

group information as the native version, so I don't go into more details here. All panels as well as the

list columns are further explained in the cursor-sensitive help text included with the DSPJOBOPNF

command.

This APIs by Example includes the following sources:

CBX227 -- RPGLE -- Display Job Open Files - CPP

CBX227E -- RPGLE -- Display Job Open Files - UIM Exit Program

CBX227H -- PNLGRP -- Display Job Open Files - Help

CBX227P -- PNLGRP -- Display Job Open Files - Panel Group

CBX227X -- CMD -- Display Job Open Files

CBX227M -- CLP -- Display Job Open Files - Build command

To create all these objects, compile and run the CBX227M program, following the instructions in the

source header. You'll also find compilation instructions in the respective source headers.

Related Articles:

A Beginner's Guide to APIs (API Error Data Structure)

Introduction to Pointers in RPG (Dynamic Memory Allocation)

IBM Documentation:

Work Management Job Concepts - Jobs

Threads

Memory Management Operations (RPG/IV)

Managing the Default Heap Using RPG Operations

Jobs system values: Maximum time for immediate end

Data Management Operations Overview

Data Management Manual (PDF)

This article demonstrates the following APIs:

List Open Files (QDMLOPNF) API

Register Call Stack Entry Termination User Exit Procedure (CEERTX) API

Unregister Call Stack Entry Termination User Exit Procedure (CEEUTX) API

Retrieve the source code for this API example.

Page 9 of 10APIs by Example: List Open Files API, and the Display Job Open Files Command

02-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-list-open-files-api-and...

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-list-open-files-api-and-

display-job-open-files-command

Page 10 of 10APIs by Example: List Open Files API, and the Display Job Open Files Command

02-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-list-open-files-api-and...

