
print | close

APIs by Example: Retrieve Subsystem Entries API

System iNetwork Programming Tips Newsletter

Carsten Flensburg

Carsten Flensburg

Thu, 09/21/2006 (All day)

Some APIs can have very complex parameter lists and be an immense challenge to code. Other APIs,

however, are pretty straightforward to tackle. Nevertheless there's also a first time when it comes to

making the acquaintance of such "easy" APIs, so this is the topic for today's API by Example.

In fact, the List Subsystem Entries (QWDLSBSE) API has only four parameters, one of which is the

common API error data structure, so calling the API correctly should hardly pose any insuperable

problems. The API returns the subsystem entry information in a user space, and I therefore focus on

the techniques involved in accessing and retrieving API output from user spaces. To wrap it all up in

a practicable context, I've written the Work with Routing Entry (WRKRTGE) command.

Despite the simplicity, let's start off with the QWDLSBSE API parameter list. Here it is in its entirety:

 1. Qualified user space name Input Char(20)

 2. List format Input Char(8)

 3. Qualified subsystem name Input Char(20)

 4. Error code I/O Char(*)

The user space specified for the first parameter is typically created immediately before calling the

API, using the Create User Space (QUSCRTUS) API. Defining a named constant for the qualified user

space name requires you to specify the name in only one place and ensures that it's the same user

space referenced on all subsequent API calls:

 **-- Global constants:

 D USRSPC_Q c 'LSTRTGE QTEMP'

The list format can be one of the following seven available formats, one for each different subsystem

entry type that this API supports:

• SBSE0100 Routing entry list

• SBSE0200 Communications entry list

• SBSE0300 Remove locations entry list

• SBSE0400 Autostart job entry list

• SBSE0500 Prestart job entry list

• SBSE0600 Workstation name entry list

• SBSE0700 Workstation type entry list

Because this example requires the routing entry list, SBSE0100 should be specified for the second

parameter.

Page 1 of 8APIs by Example: Retrieve Subsystem Entries API

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-retrieve-subsystem-en...

The qualified subsystem name must be specified in the same format as the user space parameter, a

10-byte subsystem name followed by a 10-byte library name. Because the qualified subsystem name

also happens to be the WRKRTGE command's only parameter, and CL commands pass library-

qualified parameters in the same format, I simply pass the CPP's input parameter to the QWDLSBSE

API:

 LstSbsEnt(USRSPC_Q: 'SBSE0100': PxSbsNam_q: ERRC0100);

The final error code parameter has been discussed previously in great detail in this newsletter. Please

refer to the following "Getting Started with APIs" article for all details:

http://www.SystemiNetwork.com/article.cfm?id=18648

After the call to the QWBLSBSE API, the first thing to do is check whether the call was successful. To

check, we evaluate the Bytes Available subfield in the ERRC0100 data structure.

 If ERRC0100.BytAvl = *Zero;

 ExSr PrcUsrSpc;

 EndIf;

If zero bytes available is returned, it's safe to proceed. Otherwise, you would usually use the

information in the ERRC0100 data structure to format and send an escape message, as in the

following example:

 If ERRC0100.BytAvl > *Zero;

 If ERRC0100.BytAvl

But in this case, the main candidate that could cause a failure, the

qualified subsystem name, has already been validated in the WRKRTGE

command's validity checking program (VCP), so I leave that out of the

equation here.

If you decide to return an escape message to the caller, be sure to

take into account that sending an escape message immediately

terminates the current call level (i.e., the program sending the

escape message). So you should make sure that necessary cleanup

activities are handled, for example by registering an activation group

exit program using the CEE4RAGE API. Links to API documentation are at

the end of this article.)

The processing of the list data in the user space populated by the

QWDLSBSE API is based on the information in the generic header section

of the user space. The following data structure describes the part of

the layout of this information relevant for this example:

Page 2 of 8APIs by Example: Retrieve Subsystem Entries API

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-retrieve-subsystem-en...

 **-- User space generic header:

 D UsrSpcHdr Ds Qualified Based(pUsrSpc)

 D OfsInpSec 10i 0 Overlay(UsrSpcHdr: 109)

 D SizInpSec 10i 0 Overlay(UsrSpcHdr: 113)

 D OfsHdrSec 10i 0 Overlay(UsrSpcHdr: 117)

 D SizHdrSec 10i 0 Overlay(UsrSpcHdr: 121)

 D OfsLstEnt 10i 0 Overlay(UsrSpcHdr: 125)

 D NumLstEnt 10i 0 Overlay(UsrSpcHdr: 133)

 D SizLstEnt 10i 0 Overlay(UsrSpcHdr: 137)

As you can see, the UsrSpcHdr data structure is defined as based on the pointer pUsrSpc. This means

that the data structure maps to whatever location that this pointer is pointing to (i.e., the storage

address defined by the pointer's current value).

After the user space has been created and the QWDLSBSE API has written data to it, I use the

Retrieve Pointer to User Space (QUSPTRUS) API to retrieve the address of the first byte of the user

space:

 RtvPtrSpc(USRSPC_Q: pUsrSpc);

As the first parameter, I specify the user space's qualified name (using the named constant

mentioned earlier), and if all works out, the QUSPTRUS returns the user space address in the second

parameter. So by simply specifying the pointer that the user space generic header data structure is

based on as the second parameter, I make the information in this data structure immediately

available following the (successful) QUSPTRUS API call.

At the end of this article, I provide a link to the section in IBM's online API manual that describes in

detail the layout of the various user space structures and their internal relationships. I recommend

that you study this information to understand the objectives and thoughts behind this concept. Doing

so will help you write the most flexible and robust code when dealing with APIs and user spaces.

Armed with the information in the user space generic header data structure, I initialize the pointers

that the Input Parameter Section, the Header Section and the List Entry Structure are based on, to

the address returned:

 pInpInf = pUsrSpc + UsrSpcHdr.OfsInpSec;

 pHdrInf = pUsrSpc + UsrSpcHdr.OfsHdrSec;

 pLstEnt = pUsrSpc + UsrSpcHdr.OfsLstEnt;

At this point, I have access to the information in the Input Parameter Section and the Header

Section. And if list entries are present, I also have access to the first list entry. However, I do not

access the list entry data until I have verified that there actually is at least one entry in the list. The

Page 3 of 8APIs by Example: Retrieve Subsystem Entries API

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-retrieve-subsystem-en...

Number of List Entries (NumLstEnt) subfield of the user space header holds that piece of

information:

 For Idx = 1 to UsrSpcHdr.NumLstEnt;

 LstEnt.Option = *Zero;

 LstEnt.SeqNbr = SBSE0100.SeqNbr;

 LstEnt.RtgPgm_q = SBSE0100.RtgPgm_q;

 LstEnt.RtgCls_q = SBSE0100.RtgCls_q;

 ...

 If Idx

The preceding code snippet demonstrates how the user space list can be

retrieved, one entry at a time. The For loop executes as many times as

there are list entries available in the user space. For each entry,

the retrieved routing entry information is processed, and finally the

list entry pointer is advanced to the next entry.

The pointer is advanced by means of another header information

subfield called "Size of List Entry." When the pointer is advanced,

it's important to make sure you only do it as many times as there are

list entries. Never point the pointer beyond the end of the list, or

unpredictable results can occur.

Another technique that might be relevant to cover in this context

relates to information being added to API return formats over time.

Often an API data structure will have new fields that are added with a

release upgrade. Other times, changes are introduced by means of PTFs.

When the changes occur during a release upgrade, you can use compiler

directives to distinguish between old and new formats as shown in the

following example. This lets you use the same source member on

different i5/OS releases.

 /If Defined(*V5R3M0)

 Format for V5R3 or later

 /Else

 Format for V5R2 or earlier

 /EndIf

Page 4 of 8APIs by Example: Retrieve Subsystem Entries API

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-retrieve-subsystem-en...

Another method to safeguard your access to the returned information is to (again) use the

information provided in the user space generic header data structure. For the QWDLSBSE API,

release V5R3 introduced an addition to the SBSE0100 format. Three new resource affinity attributes

were added. To ensure that these fields are referenced only if present, I added the following

statement to the list entry processing part of my code:

 If UsrSpcHdr.SizLstEnt >= %Size(SBSE0100);

 LstEnt.ThrRscAffGrp = SBSE0100.ThrRscAffGrp;

 LstEnt.ThrRscAffLvl = SBSE0100.ThrRscAffLvl;

 LstEnt.RscAffGrp = SBSE0100.RscAffGrp;

 EndIf;

Only if the list entry length returned by the QWDLSBSE API is equal to (or longer than) the

SBSE0100 data structure do I access the newly added fields.

When I'm through processing the list, the program continues doing what it's further supposed to do.

There's one final responsibility for the programmer in relation to the user space initially created.

When the program is about to end, it's good practice to perform the necessary cleanup duties and

ensure that the user space is deleted:

 DltUsrSpc(USRSPC_Q: ERRC0100);

As for the purpose of all these efforts, let me give you a brief introduction to the WRKRTGE

command. Here's the command prompt:

 Work with Routing Entries (WRKRTGE)

 Type choices, press Enter.

 Subsystem Name

 Library *LIBL Name, *LIBL, *CURLIB

You simply specify the name of the subsystem whose routing entries you want to work with, as in the

following example:

 WRKRTGE SBS(QINTER)

Running the above command leads to the display of a list panel similar to the one below:

 Work with Routing Entries WYNDHAMW

 16-09-06 21:05:58

 Subsystem . . . : QINTER Subsystem status : *ACTIVE

 Library . . . : QSYS

 Type options, press Enter.

 2=Change 3=Copy 4=Remove

 Seq Start

 Opt Nbr Program Library Compare value Pos.

 10 QCMD QSYS QCMDI 1

 15 QCMD QSYS QIGC 1

 20 QCMD QSYS QS36MRT 1

 40 QARDRIVE QSYS 525XTEST 1

Page 5 of 8APIs by Example: Retrieve Subsystem Entries API

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-retrieve-subsystem-en...

 700 QCL QSYS QCMD38 1

 9999 QCMD QSYS *ANY 0

 Bottom

 Parameters or command

 ===>

 F3=Exit F4=Prompt F5=Refresh F6=Add routing entry

 F11=View 2 F12=Cancel F21=Print list F24=More keys

The list panel offers three alternate views, all together displaying all available routing entry

attributes. The list options let you run the three routing entry CL commands: Change Routing Entry

(CHGRTGE), Add Routing Entry (ADDRTGE) (based on an existing routing entry, thus providing

the copy option), and finally Remove Routing Entry (RMVRTGE).

Among other facilities, the function keys offer access to a print list function, the ADDRTGE

command, and the WRKSBSD (Work with Subsystem Description) command. Cursor-sensitive help

text is also provided for both list panel and command.

If you want to learn more about routing entries and the role they play in how jobs get processed in a

subsystem, follow the link at the end of this article for "How works get processed," as well as the

other links for related aspects of work management.

This APIs by Example includes the following sources:

CBX162 -- Work with Routing Entries - CCP

CBX162E -- Work with Routing Entries - UIM Exit Program

CBX162H -- Work with Routing Entries - Help

CBX162P -- Work with Routing Entries - Panel Group

CBX162V -- Work with Routing Entries - VCP

CBX162X -- Work with Routing Entries

CBX162M -- Work with Routing Entries - Build command

To create all these objects, compile and run CBX162M. Compilation instructions are in the source

headers, as usual.

"How work gets processed":

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/rzaks/rzakshowwrkgetsproc.htm

The CEE4RAGE API documentation:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/CEE4RAGE.htm

User space structure documentation:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/usf.htm

This article demonstrates the following APIs:

List Subsystem Entries (QWDLSBSE) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qwdlsbse.htm

Retrieve Subsystem Information (QWDRSBSD) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/qwdrsbsd.htm

Page 6 of 8APIs by Example: Retrieve Subsystem Entries API

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-retrieve-subsystem-en...

Create User Space (QUSCRTUS) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/quscrtus.htm

Delete User Space (QUSDLTUS) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/qusdltus.htm

Retrieve Pointer to User Space (QUSPTRUS) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/qusptrus.htm

Open Display Application (QUIOPNDA) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/quiopnda.htm

Close Application (QUICLOA) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/quicloa.htm

Display Panel (QUIDSPP) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/quidspp.htm

Put Dialog Variable (QUIPUTV) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/quiputv.htm

Get Dialog Variable (QUIGETV) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/quigetv.htm

Add List Entry (QUIADDLE) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/quiaddle.htm

Get List Entry (QUIGETLE) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/quigetle.htm

Update List Entry (QUIUPDLE) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/quiupdle.htm

Remove List Entry (QUIRMVLE) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/quirmvle.htm

Retrieve List Attributes (QUIRTVLA) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/quirtvla.htm

Set List Attributes (QUISETLA) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/quisetla.htm

Delete List (QUIDLTL) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/quidltl.htm

Print Panel (QUIPRTP) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/quiprtp.htm

Add Print Application (QUIADDPA) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/quiaddpa.htm

Remove Print Application (QUIRMVPA) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/quirmvpa.htm

Page 7 of 8APIs by Example: Retrieve Subsystem Entries API

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-retrieve-subsystem-en...

Retrieve Message (QMHRTVM) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/QMHRTVM.htm

Send Program Message (QMHSNDPM) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/QMHSNDPM.htm

Retrieve Object Description (QUSROBJD) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/qusrobjd.htm

You can retrieve the source code for this API example from

http://www.pentontech.com/IBMContent/Documents/article/53255_117_RtvSbsEnt.zip

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-retrieve-subsystem-

entries-api

Page 8 of 8APIs by Example: Retrieve Subsystem Entries API

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-retrieve-subsystem-en...

