
print | close

APIs by Example: Reverse Engineering Database Files and
Objects to SQL DDL Statements

System iNetwork Programming Tips Newsletter

Carsten Flensburg

Carsten Flensburg

Thu, 08/09/2007 (All day)

We've been covering the topic of using SQL instead of DDS to define your database files for quite

some time now. The benefits and possible problems and pitfalls have been documented in a number

of articles, as have the various methods and approaches to actually making the move from DDS to

SQL. To get you up to speed in case you missed any of the articles when they were initially published,

I've included links at the end of this article. Please note that some of the articles require a ProVIP

membership to access.

Reading these articles, you'll notice that there's an option of using iSeries Navigator to take existing

DDS-defined database files and generate the SQL Data Definition Language (DDL) statements

needed to create or re-create these objects as SQL file objects, such as tables, views, and indexes. This

iSeries Navigator facility is based on an i5/OS API: Generate Data Definition Language

(QSQGNDDL). And although iSeries Navigator continues to improve in performance and usability

with every new release, in some cases using a CL command to get the job done is still faster and more

convenient. With that reality in mind, I took advantage of the QSQGNDDL API to create a Generate

SQL Data Definition Language (GENSQLDDL) command that offers the same reverse engineering

services that iSeries Navigator offers.

The QSQGNDDL API — and consequently the GENSQLDDL command — is not limited to generating

DDL based on DDS-defined file objects; it can take any SQL database object and create the SQL

statements required to create or re-create the object in question. The following database object types

are supported:

• TABLE or PF — An SQL table or physical file

• VIEW or LF — An SQL view or logical file

• SCHEMA or LIB — An SQL schema (collection) or library

• ALIAS — An SQL alias

• INDEX — An SQL index

• TRIGGER — The object attribute is a trigger

• CONSTRAINT — The object attribute is a constraint

• FUNCTION — An SQL function

• PROCEDURE — An SQL procedure

• TYPE — The object is an SQL type

The GENSQLDDL command also has many formatting parameters that let you control which SQL

statements are included in the DDL generation and how they are formatted. I explain a couple of the

more important options in the following paragraphs.

• Naming: This option defines the naming convention used for qualified names in the generated

SQL statements. The possible values are:

Page 1 of 7APIs by Example: Reverse Engineering Database Files and Objects to SQL DDL Stat...

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-reverse-engineering-d...

◦ *SQL — The collection.table syntax

◦ *SYS — The library/file syntax

• Standards option: The standards option specifies whether the generated SQL statements

should contain DB2 for i5/OS extensions to the DB2 Universal Database family, SQL, or the

ANSI and ISO SQL standards. The possible values are:

◦ *DB2EXT — DB2 for i5/OS extensions can be generated in SQL statements.

◦ *DB2STD — The generated SQL statements must conform to SQL statements common

to the DB2 Universal Database family.

◦ *ISOANSI — The generated SQL statements must conform to the following ISO and

ANSI SQL standards: ISO 9075-1: 1999, Database Language SQL and ANSI X3.135-1-

1999, Database Language SQL.

The standards option is important because it affects the type of SQL statements that the

GENSQLDDL command allows in the generated source and consequently in which environments

they can be successfully run. Here's an excerpt from the QSQGNDDL API documentation explaining

some of the considerations involved in setting this parameter:

If *DB2STD or *ISOANSI is chosen, the SQL statements generated may not completely

represent the object in DB2 UDB for iSeries; however, the statements will be compatible

with the specified DB2 Family or ANSI and ISO standards option.

If the object is an SQL function, SQL procedure, SQL trigger, or SQL view, the SQL

statements in the body of the object are included in the generated SQL statement.

Hence, if the Standards option *DB2STD or *ISOANSI is chosen, the generated SQL

statement may not conform to the specified standards option since the statements

within the body of the SQL object may not conform to the specified standard. For

example, if a CREATE INDEX statement exists in the body of an SQL procedure, the

generated CREATE PROCEDURE statement will contain the CREATE INDEX

statement even if Standards option *DB2STD or *ISOANSI is chosen.

There is no attempt to take product-specific limits into account. For example, a table

name in DB2 for i5/OS can be 128 bytes, but other products might not support table

names that long. Thus, even if the generated SQL statement is standard, it still might

not work on other products if they have smaller limits than those on DB2.

If *DB2STD is specified:

• the naming option must be *SQL.

• the date format must be *ISO, *USA, *EUR, or *JIS.

• the time format must be *ISO, *USA, *EUR, or *JIS.

• the decimal point must be a period.

If *ISOANSI is specified:

• the naming option must be *SQL.

• the date format must be *ISO.

• the time format must be *ISO.

• the decimal point must be a period.

• an ALIAS object type must not be specified.

A comprehensive explanation of all parameters is in the command help text panel group. Here's the

GENSQLDDL command prompt in its entirety:

Page 2 of 7APIs by Example: Reverse Engineering Database Files and Objects to SQL DDL Stat...

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-reverse-engineering-d...

 Generate SQL Data Def Language (GENSQLDDL)

 Type choices, press Enter.

 Database object

 Database object library *LIBL Character value,

*LIBL...

 Database object type *PF *PF, *LF, *LIB,

*TABLE...

 Source file Name

 Library *LIBL Name, *LIBL,

*CURLIB

 Source member *FIRST Name, *FIRST,

*LAST

 Member option *APPEND *APPEND, *REPLACE

 Statement formatting option . . *NONE *NONE, *FMTCHR

 Naming *SQL *SQL, *SYS

 Standards option *DB2EXT *DB2EXT, *DB2STD,

*ISOANSI

 Date format *ISO *ISO, *EUR, *JIS,

*USA...

 Date separator '/' /, -, ., ,, *BLANK

 Time format *ISO *ISO, *EUR, *JIS,

*USA, *HMS

 Time separator ':' :, ., ,, *BLANK

 Decimal point '.' ., ,

 Generation severity level . . . 10 0-39

 Message severity level 0 0-39

 DROP option *NOGENDROP *NOGENDROP,

*GENDROP

 COMMENT ON statement option . . *NOGENCOMMENT

 LABEL ON statement option . . . *NOGENLABEL *NOGENLABEL,

*GENLABEL

 Header generation option *NOGENHDR *NOGENHDR, *GENHDR

 Trigger generation option . . . *GENTRG *NOGENTRG, *GENTRG

 Constraints generation option . *GENCST *NOGENCST, *GENCST

 System name option *NOGENRENAME *NOGENRENAME,

*GENRENAME

Page 3 of 7APIs by Example: Reverse Engineering Database Files and Objects to SQL DDL Stat...

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-reverse-engineering-d...

The GENSQLDDL command's last three parameters — Trigger generation option, Constraints

generation option, and System name option — are all V5R4 inventions. In earlier releases, the CPP

therefore ignores those three parameters. The QSQGNDDL API was introduced in V5R1, limiting its

use to that and later releases.

The GENSQLDDL command places the generated SQL statements in the specified source member

and source file. Note that the source file must have a record length of minimum 92 bytes, otherwise

the API or command fails. To execute the SQL statements, you can use the source member as direct

input to the RUNSQLSTM command:

 Run SQL Statements (RUNSQLSTM)

 Type choices, press Enter.

 Source file Name

 Library *LIBL Name, *LIBL,

*CURLIB

 Source member Name

 Commitment control *CHG *CHG, *UR, *CS,

*ALL, *RS...

 Naming *SYS *SYS, *SQL

 Additional Parameters

 Severity level 10 0-40

 Date format *JOB *JOB, *USA, *ISO,

*EUR...

 Date separator character *JOB *JOB, /, ., ,, -,

' ', *BLANK

 Time format *HMS *HMS, *USA, *ISO,

*EUR, *JIS

 Time separator character *JOB *JOB, :, ., ,, '

', *BLANK

 Default collection *NONE Name, *NONE

 IBM SQL flagging *NOFLAG *NOFLAG, *FLAG

 ANS flagging *NONE *NONE, *ANS

 Decimal Point *JOB *JOB, *SYSVAL,

*PERIOD...

 Sort sequence *JOB Name, *JOB,

*LANGIDUNQ...

 Library Name, *LIBL,

*CURLIB

 Language id *JOB *JOB, *JOBRUN...

 Print file QSYSPRT Name

Page 4 of 7APIs by Example: Reverse Engineering Database Files and Objects to SQL DDL Stat...

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-reverse-engineering-d...

 Library *LIBL Name, *LIBL,

*CURLIB

 Statement processing *RUN *RUN, *SYN

 Allow copy of data *OPTIMIZE *OPTIMIZE, *YES,

*NO

 Allow blocking *ALLREAD *ALLREAD, *NONE,

*READ

 SQL rules *DB2 *DB2, *STD

 Decimal result options:

 Maximum precision 31 31, 63

 Maximum scale 31 0-63

 Minimum divide scale 0 0-9

 Listing output *NONE *NONE, *PRINT

 Target release *CURRENT *CURRENT, VxRxMx

 Debugging view *NONE *NONE, *SOURCE,

*STMT, *LIST

 Close SQL cursor *ENDACTGRP *ENDACTGRP,

*ENDMOD

 Delay PREPARE *NO *NO, *YES

 User profile *NAMING *NAMING, *USER,

*OWNER

Note that some of the parameters are identical to those that the GENSQLDDL command offers, and

they are required to match in order for the RUNSQLSTM command to run successfully.

After you install the GENSQLDDL command, you can give it a test drive by following these

instructions:

1. Run the GENSQLDDL command against a file or database object of your choice — for

example:

 GENSQLDDL DBOBJ(QADBXREF)

 DBLIB(QSYS)

 TYPE(*PF)

 SRCFILE(QGPL/QDDLSRC)

 MBR(QADBXREF)

 MBROPT(*REPLACE)

 NAMING(*SQL)

2. Be sure to carefully read the messages and information issued during the conversion process

and added to the source member. Next, adapt the generated source member to allow the

generated SQL statements to be executed in the next step. You would, for example, need to

Page 5 of 7APIs by Example: Reverse Engineering Database Files and Objects to SQL DDL Stat...

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-reverse-engineering-d...

change the library in the CREATE TABLE statement to something more appropriate than

QSYS, in case you have run the preceding GENSQLDDL command example.

3. Execute the RUNSQLSTM command against the newly created source member:

 RUNSQLSTM SRCFILE(QGPL/QDDLSRC)

 SRCMBR(QADBXREF)

 NAMING(*SQL)

4. Verify that the file specified in the CREATE TABLE statement was successfully created. If

errors occur during the execution of the SQL statement, you receive an SQL9010 exception

message: RUNSQLSTM command failed. You can find diagnostic messages in your job's job

log to point you to the actual cause of the failure.

After you complete the test, consider deleting the newly created file if you have no other use for it.

This APIs by Example includes the following sources:

CBX176 -- RPGLE -- Generate SQL Data Definition Statements -- CPP

CBX176H -- PNLGRP -- Generate SQL Data Definition Statements -- Help

CBX176X -- CMD -- Generate SQL Data Definition Statements

CBX176M -- CLP -- Generate SQL Data Definition Statements -- Build

command

To create all these objects, compile and run CBX176M. Compilation instructions are in the source

headers, as usual.

SQL/DDS-related articles previously published on SystemiNetwork.com:

Stop Using DDS! A Better Way to Make Files (April 12, 2007, article ID 54441)

Follow Up to: Stop Using DDS! A Better Way to Make Files (April 26, 2007, article ID 54545)

Replacing a DDS Physical File with an SQL Table (May 2005, article ID 20057)

Performance Comparison of DDS-Defined Files and SQL-Defined Files (May 2005, article ID 20067)

Database Harmony: "Traditional" and SQL Coexistence (May 2005, article ID 20060)

Is DDS Dead? (April 2001, article ID 9821)

IBM SQL/DDL-related documentation:

Data Definition Language:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/sqlp/rbafysqltech.htm

Types of SQL Statements:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/sqlp/rbafystmtype.htm

SQL Concepts:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/sqlp/rbafysqlconcepts.htm

Page 6 of 7APIs by Example: Reverse Engineering Database Files and Objects to SQL DDL Stat...

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-reverse-engineering-d...

SQL Objects:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/sqlp/rbafysqlobjects.htm

Run SQL Statements (RUNSQLSTM) Command:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/cl/runsqlstm.htm

This article demonstrates the following database and file API:

Generate Data Definition Language (QSQGNDDL) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qsqgnddl.htm

You can retrieve the source code for this API example from:

http://www.pentontech.com/IBMContent/Documents/article/55321_273_GenSqlDdl.zip.

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-reverse-engineering-

database-files-and-objects-sql-ddl-statements

Page 7 of 7APIs by Example: Reverse Engineering Database Files and Objects to SQL DDL Stat...

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-reverse-engineering-d...

