APIs by Example: A Validation List Entry's Life Cycle in CL Commands Page 1 of 7

ﬂ print | close

APIs by Example: A Validation List Entry's Life Cycle in CL
Commands

System iNetwork Programming Tips Newsletter

Carsten Flensburg
Carsten Flensburg
Thu, 06/25/2009 (All day)

This week, I continue the coverage of validation lists and validation list entries, which I began in the
June 11 issue of this newsletter. In that article, I discussed the basics of validation lists and the
anatomy of validation list entries, and I also provided new validation list commands. I recommend
reading the article, if you haven't already. A link is provided at the end of this article.

As I've demonstrated in my earlier contributions to this column, you'll often build the validation list
APTs and functions directly into your applications. You can also find links to these articles at the end
of this article. However, while developing and testing these applications, you'll often need to create,
change, verify, and remove validation list entries to make sure that everything works the way you've
designed and planned. This is where the Add Validation List Entry (ADDVLDLE), Verify Validation
List Entry (VFYVLDLE), Change Validation List Entry (CHGVLDLE), and Remove Validation List
Entry (RMVVLDLE) commands I present today can offer some assistance.

Each validation list entry command also constitutes an interface to, and example of, the equivalent
validation list entry API and can be employed as a starting point for your own use of these APIs. I
think it is fair to say that the validation list API documentation, and the data structures defined for
the API input and output parameters, at times can be quite challenging. Hopefully, these examples
will provide a shortcut, should you need to code these APIs yourself. Only the data structure
enhancements added to RPG IV in recent releases have made it possible to define the data structures
exactly as they were designed by IBM's API programmers.

To show you an example of this complexity and how it matches the RPG IV data structure facilities,
I've included a walkthrough of one of the validation list entry API data structures from a previous
article. Let's look at the Add Validation List Entry API parameter data structure that specifies the
entry's attribute data, Qsy_Attr_Info_T. Currently, this data structure primarily supports the ability
to define whether a validation list entry's encrypted data is allowed to be stored in a decryptable
form, a concept I explained last time.

By default, if you don't submit this data structure on the API call, this attribute is set to zero, which
will prevent you from retrieving the encrypted data from the validation list. You're faced with the
challenge of defining this data structure correctly and initializing this attribute to '1' in order to make
the encrypted data retrievable. The data structure in question is defined by three subfields:

**-— Validation list attribute data:

A-> D Qsy Attr Info T...
D Ds Qualified
D Number Attrs 101 0 Inz(1)
D Res _align 12a

http://iprodeveloper.com/print/rpg-programming/apis-example-validation-list-entrys-l... 04-04-2014

APIs by Example: A Validation List Entry's Life Cycle in CL Commands

B-> D Attr Descr LikeDs (Qsy Attr Descr T)

C-> D Inz (*LikeDs)

Page 2 of 7

The third subfield, Attr_Descr, is defined by the LikeDs keyword to have the same format as the
template data structure called Qsy_Attr_Descr_T (B). The many subfield initializations in the
template data structure are propagated to the Attr_Descr parameter with the Inz(*LikeDs) keyword

(C). The following code snippet shows these initializations:

D QOsy Attr Descr T...
D Ds Qualified
D Attr Location 101 0 Inz(QSY IN VLDL)
D Attr Type 10i 0 Inz(QSY SYSTEM ATTR)
D Attr Res 8a Inz (*Allx'00"')
F-> D Attr ID p *
D Attr Other Descr...
D 32a Inz(*Allx'00')
D Attr Data Info...
D 96a
D-> D Attr VLDL LikeDs (Qsy In VLDL T)
D Overlay (Attr Data Info: 1)
E-> D Inz(*LikeDs)
D Attr In Other...
D 96a Overlay (Attr Data Info:1)
D 64a Overlay (Attr In Other:33)
D Inz(*Allx'00')
D Attr Other Data...
D 32a Inz(*Allx'00')

The Qsy_Attr_Descr_T data structure again contains an embedded data structure, Attr_ VLDL. This

data structure is in turn defined by the template data structure Qsy_In_VLDL_T (D). The

Attr_VLDL data structure is initialized with the values from the template data structure using the Inz

(*LikeDs) keyword (E). The following code is where those initializations take place:

D QOsy In VLDL T Ds Qualified

D Attr CCSID 10i 0 Inz(-1)
G-> D Attr Len 101 0 Inz(1)

D Attr Res 1 8a Inz(*Allx'00")
H-> D Attr Value p *

**-- Qsy Attr Descr T structure constants:

D QSY IN VLDL c 0

D QSY SYSTEM ATTR...

D c 0

**-- Qsy In VLDL T structure parameter:

D Qsy Vfy Find 5] la Inz("1')

Reset Qsy Entry ID Info T;

In the code, the complex data structures' subfields are referred to by specifying their qualified name:

A-> Qsy Attr Info T
B-> | Attr Descr

http://iprodeveloper.com/print/rpg-programming/apis-example-validation-list-entrys-I...

04-04-2014

APIs by Example: A Validation List Entry's Life Cycle in CL Commands

Page 3 of 7

F-> | | Attr ID p
\ | \
Qsy Attr Info T.Attr Descr.Attr ID p = %Alloc(15);
A-> Qsy Attr Info T
B-> | Attr Descr
F-> | |

Attr ID p

$Str(Qsy Attr Info T.Attr Descr.Attr ID p: 15)

= 'QsyEncryptData’';

A-> Qsy Attr Info T

B-> | Attr Descr

D-> | |

G-> | | \
\ | \

Attr VLDL

Attr Len
|

stiAttriInfoiT.AttriDescr.Attr7VLDL.Attr7Len

= %Size(Qsy Vfy Find);

A-> Qsy Attr Info T

B-> | Attr Descr

D-> | |

H=> | | \
\ | \

Attr VLDL

Attr Value p
|

QOsy Attr Info T.Attr Descr.Attr VLDL.Attr Value p

= %Addr(Qsy Vfy Find);

As you can imagine, it can easily take an hour or two to deduce and program such a data structure.
It's often after much trial and error that I get such complex data structures working. At first, I often
have only a vague idea of how the pieces fit together. Therefore, whenever time permits, I use the
source debugger to step through the code and verify each element and subfield of the data structures.
Using the display variable function against the name of the main data structure causes the source
debugger to map out all segments and qualifications of the data structure and its subfields. This is

also a great help in the trial-and-error process.

For now, let's turn our attention to the four CL. commands being discussed today, the first one being
the Add Validation List Entry (ADDVLDLE) command. Here's the ADDVLDLE command prompt:

Type choices, press Enter.

Validation list

Library
*CURLIB
Entry ID:

http://iprodeveloper.com/print/rpg-programming/apis-example-validation-list-entrys-I...

Add Validation List Entry

(ADDVLDLE)

Name

*LIBL Name, *LIBL,

04-04-2014

APIs by Example: A Validation List Entry's Life Cycle in CL Commands Page 4 of 7

Entry ID

Coded character set identifier *DFT 1-65534, *DFT, *HEX
Encryption data:

Encryption data

Coded character set identifier *DFT 1-65534, *DFT, *HEX
Entry data:

Entry data

Coded character set identifier *DFT 1-65534, *DFT, *HEX
Encryption data option *VEFYONLY *VFYONLY, *VEYFIND

Entry ID hexadecimal

Encrypted data hexadecimal

Entry data hexadecimal

The command and all its parameters are documented in detail in the accompanying help text panel
group and also match the validation list entry parts explained earlier. Entry ID defines the value that
identifies the individual validation list entry. Encryption data is where you'd store a password or
other confidential data to be either verified or retrieved at a later point. Entry data provides an
opportunity to include and store other related information with the validation list entry.

For all three parameters, you also specify the coded character set identifier (CCSID) for each value.
Depending on the value specified, the command will convert the value accordingly before storing it in
the validation list entry.

Note that both the encryption data and entry data parts are optional. It is possible to create a
validation list entry without either of the two. You do so by specifying *NONE for either of them
when creating the validation list entry. Please see the help text for all details. The Encryption data
option is where you specify whether the encryption data is stored in a one-way or two-way
encryption format, as explained earlier. Note that by default, the stored encryption data is only
verifiable, not retrievable.

Because these commands are intended to be used in development and testing scenarios, I've also
included an option to specify the command's three main parameters in hexadecimal format. To
ensure that no CCSID conversion issues are at play, these parameters allow you to specify the entry
ID, encryption data, and entry data in hexadecimal notation, i.e. hex nibble values 0-9 and A-F. The
help text explains this option in more detail. The CHGVLDLE and RMVVLDLE commands both
present a subset of the above interface. Further documentation is in the help text panel groups.

http://iprodeveloper.com/print/rpg-programming/apis-example-validation-list-entrys-l... 04-04-2014

APIs by Example: A Validation List Entry's Life Cycle in CL Commands Page 5 of 7

The Verify Validation List Entry (VFYVLDLE) command also displays some of the above parameters,
as you'll see below:

Verify Validation List Entry (VFYVLDLE)

Type choices, press Enter.

Validation list Name
Library *LIBL Name, *LIBL,
*CURLIB
Entry ID:
Entry ID
Coded character set identifier *DFT 1-65534, *DFT, *HEX

Encryption data:

Encryption data

Coded character set identifier *DFT 1-65534, *DFT, *HEX

Entry ID hexadecimal

Encrypted data hexadecimal

The main difference is that the outcome of the validation list entry, in case of the verification process
leading to a failure, is communicated in the form of the exception message CBX0201 being returned
to the command caller. If run from a command line, this has no further implications. However, if
you're running the command in a program, you'll want to monitor for the CBX0201 message in order
to catch the event of verification failure. So far I've offered the CVTVLDL, DSPVLDLE, ADDVLDLE,
VFYVLDLE, CHGVLDLE, and RMVVLDLE CL commands. Next time, I'll complete the collection of
validation list commands, so if this has caught your interest so far, remember to check out the next
APIs by Example.

This APIs by Example includes the following sources:

CBX2051 -- RPGLE -- Add Validation List Entry - CPP
CBX2051V -- RPGLE -- Add Validation List Entry - VCP
CBX2051H -- PNLGRP -- Add Validation List Entry - Help
CBX2051X -- CMD -- Add Validation List Entry

http://iprodeveloper.com/print/rpg-programming/apis-example-validation-list-entrys-l... 04-04-2014

APIs by Example: A Validation List Entry's Life Cycle in CL Commands Page 6 of 7
CBX2052 -- RPGLE -- Verify Validation List Entry - CPP
CBX2052V -- RPGLE -- Verify Validation List Entry - VCP
CBX2052H -- PNLGRP -- Verify Validation List Entry - Help
CBX2052X -- CMD -- Verify Validation List Entry
CBX2053 =-- RPGLE -- Change Validation List Entry - CPP
CBX2053V -- RPGLE -- Change Validation List Entry - VCP
CBX2053H -- PNLGRP -- Change Validation List Entry - Help
CBX2053X —-- CMD -- Change Validation List Entry
CBX2054 -- RPGLE -- Remove Validation List Entry - CPP
CBX2054V -- RPGLE -- Remove Validation List Entry - VCP
CBX2054H -- PNLGRP -- Remove Validation List Entry - Help
CBX2054X —-- CMD -- Remove Validation List Entry
CBX205 -- RPGLE -- Validation List Entry Commands - Services
CBX205B -- SRVSRC -- Validation List Entry Commands - Binder source
CBX205M -- CLP -—- Validation List Entry Commands - Build commands

To create these Validation List Entry command objects, compile and run CBX205M, following the

instructions in the source header. As always, you'll also find compilation instructions in the

respective source headers.

Retrieve the source code for this API example.

Previously published related articles:

APIs by Example: Have a Peek at Validation List Entries

APIs by Example: User Function Registration APIs, Part 1

APIs by Example: User Function Registration APIs, Part 2

APIs by Example: User Function Registration APIs, Part 3

APIs by Example: Validation List APTs
APIs by Example: Profile Authorization Management
APIs by Example: Cryptographic Services APIs, Part 3

APIs by Example: Cryptographic Services APIs, Part 7
This article demonstrates the following Validation List APIs:

Add Validation List Entry (QsyAddValidationLstEntry) API

Verify Validation List Entry (QsyVerifyValidationLstEntry) API

Remove Validation List Entry (QsyRemoveValidationLstEntry) API

Find Validation List Entry (QsyFindValidationLstEntry) API

Find Validation List Entry Attributes (QsyFindValidationLstEntryAttrs) API

http://iprodeveloper.com/print/rpg-programming/apis-example-validation-list-entrys-1I...

04-04-2014

APIs by Example: A Validation List Entry's Life Cycle in CL Commands Page 7 of 7

Validation List APIs

Digital Certificate Management API

Retrieve the source code for this API example.

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-validation-list-entrys-
life-cycle-cl-commands

http://iprodeveloper.com/print/rpg-programming/apis-example-validation-list-entrys-l... 04-04-2014

