
print | close

APIs by Example: Identifying and Working with Service
Program References

System iNetwork Programming Tips Newsletter

Carsten Flensburg

Carsten Flensburg

Thu, 09/25/2008 (All day)

The concept of service programs is one of the most valuable additions of all time to the RPG

application development toolset on the System i. The ability to externalize and group specific and

well-defined program functions into service programs makes it so much easier to support function

reusability as well as focus on the core program logic and functionality in your programs. Perhaps

even more than a practical achievement, service programs offer a welcome twist to a programmer's

mindset, in terms of the design and development approach promoted and encouraged when taking

advantage of service programs in your daily programming efforts.

Organizing and maintaining service programs, however, requires care and thought. The system

supports and enforces integrity between service programs and the programs or service programs to

which they're bound. Because the binding to a service program and its exported subprocedures or

data is established at the point where a referencing program or service program is created, the

system attempts to verify at program activation time that the service program has not changed in an

incompatible way since the initial binding. Sometimes the ability to resolve service programs'

references and verify maintained integrity ahead of time therefore comes in handy. And so do APIs.

To ensure integrity between a service program and the programs or service programs referencing it,

all service programs are tagged with a current signature. This signature identifies the number and

sequence of the exported procedures and data from the service program and is defined whenever the

service program is created. You have the option of letting the system generate the signature by

specifying the keyword EXPORT(*ALL) on the Create Service Program (CRTSRVPGM) command.

This will cause the compiler to generate a signature based on the number, names, and order of the

service program's subprocedures being defined with the EXPORT keyword on their procedure

interface specifications.

If you want to control service program signatures yourself you have the option of using binder

language. Binder language also allows you to explicitly specify which of the exported subprocedures

you actually want to make available to other programs and service programs as well as to specify a

signature of up to 16 bytes on the binder language's Start Program Export List (STRPGMEXP)

command, as in the following example:

 StrPgmExp PgmLvl(*CURRENT) Signature('UsrAppInf_01.0.0')

 Export symbol("DLTUSRTIMZON")

 Export symbol("GETUSRTIMZON")

 Export symbol("SETUSRTIMZON")

 Export symbol("VFYUSRTIMZON")

Page 1 of 8APIs by Example: Identifying and Working with Service Program References

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-identifying-and-worki...

 EndPgmExp

You can still have the compiler generate the signature by specifying the keyword SIGNATURE

(*GEN) though, but I recommend that you specify the signature yourself to ensure a human-readable

and reproducible result. By adding new subprocedures to the end of the export list, binder language

also allows you to maintain and support previous versions of the service program by specifying a

program level (PGMLVL) of *PRV for blocks of subprocedures supported by a previous version of the

service program. A service program therefore optionally supports more than one signature. By

specifying the signature yourself, you also have the option of reusing the signature for future

versions, as long as any new exported subprocedure is added to the end of the export list.

This way you can continue to add procedures to a service program without causing signature

violations to occur to programs bound to earlier versions of the service program. Note that in order

to start taking advantage of binder language for existing service programs, you can generate binder

language members for these by using the Retrieve Binder Source (RTVBNDSRC) command. You

then have the option of adapting the binder source and subsequently re-creating the service

program, specifying the binder language member as the export source on either the CRTSRVPGM or

UPDSRVPGM (Update Service Program) command.

To look up signature information for a specific service program, use the command Display Service

Command (DSPSRVPGM) specifying the keyword DETAIL(*SIGNATURE):

 DSPSRVPGM SRVPGM(CBX001) DETAIL(*SIGNATURE)

For the specified program, the above command leads to the panel below, after pressing function key

F11 to see the character version of the signature instead of the hexadecimal format:

 Display Service Program Information

 Display 1 of 1

 Service program : CBX001

 Library : QGPL

 Owner : CARSTEN

 Service program attribute : RPGLE

 Detail : *SIGNATURE

 Signatures:

 UsrAppInf_01.5.0

 UsrAppInf_01.2.0

Page 2 of 8APIs by Example: Identifying and Working with Service Program References

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-identifying-and-worki...

 Bottom

 F3=Exit F11=Display hexadecimal signature F12=Cancel F17=Top

 F18=Bottom

The above service program CBX001 supports two program signature levels, UsrAppInf_01.5.0,

which is the current level, and UsrAppInf_01.2.0, which is a previous level. As I will explain in the

following section, any program or service program referencing the CBX001 service program must

store one of the two signatures to be allowed to successfully activate the CBX001 service program.

Here's how it goes: When a program or service program referencing one or more subprocedures in a

(nother) service program is created, the binding process performed during program creation will link

the referenced service program to the program being created. This binding process will retrieve and

store the current signature of the service program into the program or service program being created.

When later the program or service program is activated, the system will attempt to check and verify

that any referenced service program still supports the stored signature. If this check fails, the

activation process will terminate, and an exception message will be sent to the caller. This facility is

conceptually very much like the record-level identifier used to verify that externally defined files have

not changed since program compilation time, whenever a program referencing the file is activated,

and generates a level check exception if a change is detected.

To examine what signature level a program or service program requires to successfully activate a

specific service program, you can use the Display Program (DSPPGM) and Display Service Program

(DSPSRVPGM) commands, respectively, specifying the DETAIL(*SRVPGM) keyword:

 DSPPGM PGM(CBX101) DETAIL(*SRVPGM)

Again, you'll need to press F11 to see the character version of the signatures:

 Display Program Information

 Display 1 of 1

 Program : CBX101 Library :

QGPL

 Owner : CARSTEN

 Program attribute . . : RPGLE

 Detail : *SRVPGM

 Type options, press Enter.

 5=Display

Page 3 of 8APIs by Example: Identifying and Working with Service Program References

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-identifying-and-worki...

 Service

 Opt Program Library Signature

 CBX001 *LIBL UsrAppInf_01.5.0

 QRNXIE QSYS QRNXIE

 QRNXUTIL QSYS QRNXUTIL

 QLEAWI QSYS à7 ¿µee¬#ÿ¬1n8¬A

 Bottom

 F3=Exit F4=Prompt F11=Display hexadecimal signature

F12=Cancel

 F17=Top F18=Bottom

If you're interested in reading more about the concept of service program signatures, be sure to use

the links I've included at the end of this article. They reference articles that discuss this topic

thoroughly

Anyway, at this point it is obviously possible to establish a cross reference between service programs

and the programs and service programs bound to it. It just requires a lot of manual work to inspect

all the relevant candidates for a reference to the service program in question, followed by a visual

verification of the individual signature levels.

If you therefore arrive at a situation in which you'll need to change a signature, remove a

subprocedure, reorganize and split up an extending service program, or something similarly

incompatible with maintaining a supported signature for existing programs or service programs--or

if you simply want to document and establish a cross reference report for specific service programs--

you could be looking at a challenging and time-consuming task.

That was the conclusion I arrived at when placed in a similar situation recently. So I decided to

instead spend the time building a tool allowing me to let the system do the hard work. The Work with

Service Program References (WRKSPGREF) command was the result of this effort, here's what the

command's prompt looks like:

 Work with Service Program Ref (WRKSPGREF)

 Type choices, press Enter.

 Service program Name

 Library *LIBL Name, *LIBL,

*CURLIB

 Reference program Name, generic*,

Page 4 of 8APIs by Example: Identifying and Working with Service Program References

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-identifying-and-worki...

*ALL

 Library *LIBL Name, *LIBL,

*CURLIB...

 Reference program type *ANY *ANY, *PGM,

*SRVPGM

 Sort order *OBJLIB *OBJLIB, *TYPOBJ,

*LIBOBJ...

 Output * *, *PRINT

You specify the service program whose references you want to identify and signature level check as

the primary parameter. Next you enter the generic name and library qualification of the relevant

selection of programs and service programs to retrieve and check. Using the special name value *ALL

and one of the special values available for library qualification you can potentially list and examine a

lot of programs and service programs. This could of course lead to an extensive use of system

resources, so if possible, narrow the field of candidates appropriately.

You also have the option of selecting only one type of programs for scrutiny as well as specify a

variety of sort orders for the produced list. Finally you can choose to print the program list instead of

displaying a work with panel. The available online help text offers more detail about the command

and its parameters.

Here's a list of the core APIs and steps involved in producing a list of programs and service programs

bound to a specific service program:

1. Call the Retrieve Service Program Information (QBNRSPGM) API to retrieve the current

signature of the specified service program.

2. Call the List Service Program Information (QBNLSPGM) API to retrieve a list of all signatures

currently supported by the specified service program.

3. For each program and service program identified by the command REFPGM selection criteria

list all bound service programs using the List ILE Program Information (QBNLPGMI) API and

List Service Program Information (QBNLSPGM) API, respectively.

4. For all programs and service programs referencing the service program in question match the

signature against:

a. The current signature of the service program

b. The list of all signatures supported by the service

program.

5. If a) produces a match the referencing program or service program is at a current signature

level with the service program.

6. If b) produces a match the referencing program or service program is at a previous signature

level with the service program (aka back-level).

7. If neither a) nor b) produces a match the referencing program or service program will generate

a signature violation (MCH4431) upon an attempted initiation of the program or service

program.

Page 5 of 8APIs by Example: Identifying and Working with Service Program References

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-identifying-and-worki...

To show you an example of the WRKSPGREF display panel and to visualize the effect of the above

algorithm, I ran the following command on my system:

 WRKSPGREF SRVPGM(QGPL/CBX001)

 REFPGM(QGPL/CBX*)

 REFPGMTYP(*ANY)

 ORDER(*OBJLIB)

 OUTPUT(*)

The command returned the following program list display:

 Work with Service Program References

 WYNDHAMW

 17-09-08

 12:21:23

 Service program : CBX001

 Library : QGPL

 Current signature . . . : UsrAppInf_01.5.0

 Type options, press Enter.

 2=Update 4=Delete 5=Display 6=Print 7=Rename 8=Program

reference

 Program Reference Reference

Signature

 Opt Name Library Type Library Signature

State

 CBX101 QGPL *PGM *LIBL UsrAppInf_01.5.0

 *CURRENT

 CBX102 QGPL *PGM *LIBL UsrAppInf_01.2.0

 *BACKLEVEL

 CBX103 QGPL *PGM *LIBL UsrAppInf_01.0.0

 *SIGVIOL

 Bottom

 Parameters or command

Page 6 of 8APIs by Example: Identifying and Working with Service Program References

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-identifying-and-worki...

 ===>

 F3=Exit F4=Prompt F5=Refresh F8=Display service program

F9=Retrieve

 F11=Display hexadecimal F12=Cancel F17=Top F18=Bottom

Using the function key F11 you can toggle between a hexadecimal signature format, a character

signature format, and a program description. Function key F8 allows you to run the Display Service

Program (DSPSRVPGM) command against the specified service program. A number of list options

are included to execute various commands against the found programs and service programs. The

list of available commands includes UPDPGM/UPDSRVPGM, DLTPGM/DLTSRVPGM,

DSPPGM/DSPSRVPGM, RNMOBJ, and DSPPGMREF. Again, you also have online help text

available to explain the list panel, columns, options and function keys.

This APIs by Example includes the following sources:

CBX196 -- RPGLE -- Work with Service Program References - CPP

CBX196E -- RPGLE -- Work with Service Program References - UIM Exit

Program

CBX196H -- PNLGRP -- Work with Service Program References - Help

CBX196P -- PNLGRP -- Work with Service Program References - Panel

Group

CBX196V -- RPGLE -- Work with Service Program References - VCP

CBX196X -- CMD -- Work with Service Program References

CBX196M -- CLP -- Work with Service Program References - Build

Command

To create all the above objects, compile and run CBX196M, following the instructions in the source

header. As always, you'll also find compilation instructions in the respective source headers.

Previously published articles explaining the concept of service program exports:

Barbara Morris: Maintainable Service Programs

http://systeminetwork.com/article/maintainable-service-programs

Scott Klement: Make a List of Your Exports

http://systeminetwork.com/node/61306

Simon Coulter: Service Program Signature Violations (Midrange Wiki)

http://wiki.midrange.com/index.php/Service_Program_Signature_Violations

This article demonstrates the following Program and CL Command APIs:

Retrieve Program Information (QCLRPGMI) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qclrpgmi.htm

Retrieve Service Program Information (QBNRSPGM) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qbnrspgm.htm

Page 7 of 8APIs by Example: Identifying and Working with Service Program References

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-identifying-and-worki...

List ILE Program Information (QBNLPGMI) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qbnlpgmi.htm

List Service Program Information (QBNLSPGM) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qbnlspgm.htm

You can retrieve the source code for this API example from:

http://www.pentontech.com/IBMContent/Documents/article/57221_669_WrkSpgRef.zip.

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-identifying-and-working-

service-program-references

Page 8 of 8APIs by Example: Identifying and Working with Service Program References

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-identifying-and-worki...

