4/4/2014 APIs by Example: List Job Object Locks

B print | close

APls by Example: List Job Object Locks

SystemiNetwork
Sy stem iNEWS Staff
Thu, 07/15/2004 (All day)

In thisinstallment of APIs by Example, Carsten Flensburg demonstrates the Retrieve Job Locks (QWCRJBLK)
APL Twosample programs have been provided for this article.

The first sample program is named CBX504T. It's a straightforward example of calling the second sample
program.

The second sample program is named CBX504, and it's the one that makes the call tothe QWCRJBLK APL There
are two parts of this: The way that memory is allocated, and the way that the returned list is processed. Il
explain both partsin this article.

When you call a program, one of the very first thingsthat the program does is ask the operating sy stem for a
place in memory that it can store each of its variables. The exception tothisrule isthat any variable, data
structure, or other definition that's declared with the BASED keyword does not get memory allocated toit. The
sy stem expects that you will either manually allocate memory for the BASED variables or that you will point
them at another valid area of memory.

In thissituation, a receiver variable is needed that will be large enough to store all of the objects locked for the
current job. How doyou know how much memory to ask for when you have noway of knowing how many
objects are locked?

The program starts out by asking the operating system for 10k of memory using the following two lines of code:

C Eval ApiRcvSiz = 10240
C Eval pLstHdr = %$Alloc(ApiRcvSiz

Since the JBLKo100 data structure is based on the pLstHdr pointer, that data structure is now able to store up to
10k of information. When the QWCRJBLK API is called, the ApiRev Siz variable is passed to it to tell the API how
much space is available.

The following code runs after the memory is allocated:

c DoU JBLKO100.BytAvl *Zero

* %

C If ApiRcvSiz

That loop keeps running the API until the results fit into the area of
memory that was allocated. Each time through the loop, it calls the
API, which returns the amount of memory that's needed to list all of
the object locks in the JBLK0100.BytAvl field. If that field is larger
than what's been allocated, the %realloc() BIF is called to increase
the amount of allocated space until the area of memory is large enough
to contain the entire result.

The JBLK0100 data structure only occupies the first 24 bytes of the
memory that has been allocated to the pLstHdr pointer. The rest of the
space will contain the list of objects that are locked. The API passes
a field called OfsObjLck ("Offset to object locks") to tell the
program where the list of object locks can be found.

http://iprodevel oper.com/print/rpg- prog ramming/apis-example-list-job-object-locks 12

4/4/2014 APIs by Example: List Job Object Locks

An offset is a count of the number of bytes from a starting point to a
desired spot in memory. In this case, the pLstHdr pointer is the
starting point, so if the 0fsObjLck value is added to the pLstHdr
pointer, the result will be a pointer to the first entry in the list
of object locks returned.

The following code will set the pLstEnt pointer to point to the start
of the list of object locks:

C Eval plstEnt = pLstHdr + JBLK0100.0fsObjLck

The JBLKo100E data structure is based in the area of memory pointed to by the pLstEnt pointer —-that means
that it now occupies the area of memory where the start of the list is stored! That means that the contents of the
fields in JBLKO100OE at this point in the code will be the first entry in the list.

The API passes back the LckObjEntLen field in the JBLKo100 data structure totell us how large each element of
the returned list is. In order toread the next element of the list, the JBLKo100E data structure has tobe moved
forward in memory by that amount. This is accomplished with the following code:

C If Eix

The IF statement ensures that the pointer doesn't get incremented an
extra time on the last iteration of the FOR loop. Because of this, the
pointer will never point to an area outside of the memory that's been
allocated, which could potentially cause an error.

The Information Center page for the Retrieve Job Locks (QWCRJBLK) API
can be found at the following link:
http://publib.boulder.ibm.com/iseries/v5r2/ic2924/info/apis/gwcriblk.htm

You can download the sample code for this article from
http://www2.systeminetwork.com/noderesources/code/clubtechcode/ListJobObilocks.zip

The above source code was written by Carsten Flensburg. You can
contact Carsten at mailto:flensburg@novasol.dk

Source URL: http://iprodeveloper.com /rpg-programming /apis-example-list-job-object-locks

http://iprodevel oper.com/print/rpg- prog ramming/apis-example-list-job-object-locks

22

