
print | close

APIs by Example: Cryptographic Services APIs

System iNetwork Programming Tips Newsletter

Carsten Flensburg

Carsten Flensburg

Thu, 07/21/2005 (All day)

The Cryptographic Services APIs are the topic of this issue of APIs by Example. These APIs let you

encrypt and decrypt data on the iSeries without needing to purchase additional software or

hardware.

The example code for this article uses the Rijndal algorithm that was selected as the Advanced

Encryption Standard (AES) by the National Institute of Standards and Technology (NIST) with the

approval of the Federal Information Process Standard (FIPS) 197. There's a link to FIPS-197 at the

end of this article.

The Cryptographic Services APIs became available by installing PTFs very soon after the release of

V5R2. Subsequently, IBM also added the new APIs to the API documentation for that release. I will

provide a link to the documentation at the end of this article as well.

Here are PTFs to look for to ensure that your V5R2 machine has the Cryptographic Services APIs on

board:

V5R2 PTFs: SI10060 - Common Cryptographic APIs

 SI10105 - Common Cryptographic API includes

 MF31101 - Common Cryptographic API fix

For later releases, the Cryptographic Services APIs are part of the base install.

The cryptographic algorithms supported by the APIs in question are also dependent on the presence

of the IBM iSeries software product 5722-AC3 -- Cryptographic Access Provider 128-bit for AS/400.

You can use the CL command Display Software Resources (DSPSFWRSC) to verify that this product

in installed. If not, it can be ordered free of charge from IBM or your business partner. Please note,

however, that outside of the U.S. this product can be subject to U.S. export regulations.

For releases earlier than V5R2, the _CIPHER MI built-in offers a subset of the cryptographic

algorithms made available by the Cryptographic Services APIs. I’ve added a link below to the V5R1

documentation for that MI built-in, just in case.

AES replaces the old Data Encryption Standard (DES) algorithm as the encryption standard

algorithm and is therefore an obvious choice for this example. To offer a simple interface to the APIs,

I have packaged them in the CBX139 service program and predefined some of the API parameter

settings. You can of course alter these settings any way you find appropriate for your own use.

To give you an idea of how the encryption and decryption process works, I have also written a small

test program that runs three test scenarios:

1. The encryption and decryption process is run based on a predefined data string and key string.

Page 1 of 4APIs by Example: Cryptographic Services APIs

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-service...

2. The encryption and decryption process is run based on a data string specified by you and an API

generated key string.

3. The encryption and decryption process is run based on the data string from test 2 and a 16-byte

key string specified by you in the format of 32 hex nibbles. Nibbles are a character representation of

the 4-bit sequences making up half a byte, as in the following 16 byte string example:

5FAC48BB687443BC06E611977A0D8C76

Please note that AES is a block cipher, and the encrypted string size is therefore a multiple of the

specified block size, which for AES can be either 16, 24, or 32 bytes. In this example, I have used a

block size of 16 bytes. For input data string sizes between 1 and 16 bytes, an output cipher string of 16

bytes is returned; input data strings between 17 and 32 bytes return a 32-byte output string; and so

on, with the next size input data string always returning an output string that is up to the next 16 byte

boundary.

If you want to store an encrypted value in a data file, you should define the length of the field to hold

the cipher string in accordance with the above implementation. Let’s say you want to encrypt and

store a 19-digit credit card number. In this case, you would need a 32-byte field to hold the encrypted

string. Likewise, a 35-letter name field would require a 48-byte field to hold the cipher string being

returned from the encryption process.

Each example outputs information about the various steps it takes in a window on your screen. An

example of this window follows:

..

: :

: Data string . . : Very secret text string :

: Key string . . : 5FAC48BB687443BC06E611977A0D8C76 :

: Cipher string . : iôÎMà ïëU "Ù: .Õè è §7 ÙÏÙ®¥ :

: Key string . . : 5FAC48BB687443BC06E611977A0D8C76 :

: Clear text . . : Very secret text string :

: :

: Bottom :

: F12=Cancel :

: :

:..:

The first line displays the text string to be encrypted and the second line the encryption key string in

an external, hexadecimal format. As a result of the encryption process, you see the encrypted string

in the third line.

Next the process is reversed, using the decryption key displayed in the fourth line, which of course

must be the same as the one used to encrypt the text string. The result, and verification, of the

encryption and decryption test is shown in the fifth line.

Starting debug against the CBX139T program and stepping through the test examples using

command key F10 is another recommended way to study the work of the Cryptographic Services

APIs and the other functions included in the test program. To jump into the execution of the

subprocedures, press F22 when reaching the subprocedure statements.

Page 2 of 4APIs by Example: Cryptographic Services APIs

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-service...

If you consider using cryptography in your applications, please note that cipher key administration

and cipher key secrecy is the fundamental basis of doing so successfully. If a cipher key is

compromised in any way, the information that it protects will no longer be secured against

unauthorized access.

V5R3 brought a broad variety of enhancements to the cryptographic services APIs, including a whole

set of APIs for key generation as well as a number of APIs dealing with the so called Cryptographic

Context concept.

A cryptographic context is a symbolic representation (token) of either a cryptographic algorithm and

state or a cryptographic key. Once created, the context token can be used as input to various

cryptographic APIs, but only within the same job in which it was created. Since only the token is

passed on to the cryptographic processes, the risk of exposing cryptographic algorithm and key

values is potentially reduced.

In a future issue of APIs by Example, I will demonstrate some of the V5R3 Cryptographic Services

API enhancements. In the mean time, please follow the link below to check out the V5R3

documentation.

This APIs by Example includes the following sources:

CBX139 –- Cryptographic services service program

CBX139B –- Service program binder source

CBX139T –- Test cryptographic services service program

Compilation instructions are found in the source headers –- please note that from this example and

on I will be using binder language to define service program exports.

V5R1 _CIPHER MI built-in documentation:

http://publib.boulder.ibm.com/iseries/v5r1/ic2924/tstudio/tech_ref/mi/CIPHER.htm

V5R2 Cryptographic Services APIs documentation:

http://as400bks.rochester.ibm.com/iseries/v5r2/ic2924/info/apis/catcrypt.htm

V5R3 Cryptographic Services APIs documentation:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/ic2924/info/apis/catcrypt.htm

FIPS-197 documentation:

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

This article demonstrates the following APIs:

Encrypt data (Qc3EncryptData) API:

http://as400bks.rochester.ibm.com/iseries/v5r2/ic2924/info/apis/qc3encdt.htm

Decrypt data (Qc3DecryptData) API:

http://as400bks.rochester.ibm.com/iseries/v5r2/ic2924/info/apis/qc3decdt.htm

Generate Pseudorandom Numbers (Qc3GenPRNs) API:

http://as400bks.rochester.ibm.com/iseries/v5r2/ic2924/info/apis/qc3genprns.htm

Display Long Text (QUILNGTX) API:

http://as400bks.rochester.ibm.com/iseries/v5r2/ic2924/info/apis/quilngtx.htm

Page 3 of 4APIs by Example: Cryptographic Services APIs

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-service...

Send Program Message (QMHSNDPM) API:

http://publib.boulder.ibm.com/iseries/v5r2/ic2924/info/apis/QMHSNDPM.htm

Receive Program Message (QMHRCVPM) API:

http://as400bks.rochester.ibm.com/iseries/v5r2/ic2924/info/apis/QMHRCVPM.HTM

You can retrieve the source code for this API example from

http://www.pentontech.com/IBMContent/Documents/article/51236_28_CryptoServices.zip.

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-cryptographic-services-

apis

Page 4 of 4APIs by Example: Cryptographic Services APIs

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-service...

