
print | close

APIs by Example: Display Partition Information, and a
DSPSYSCFG Command Update

System iNetwork Programming Tips Newsletter

Carsten Flensburg

Carsten Flensburg

Thu, 09/23/2010 (All day)

In the preceding issue of APIs by Example ("Tricky Retrieve APIs and How to Process the Receiver

Variable," August 26, 2010, article ID 65412), I left you with a promise to provide a Display Partition

Information (DSPPTNINF) command. The foundation for a DSPPTNINF command is naturally the

Retrieve Partition Information (dlpar_get_info) API, which was introduced with release 5.3. So in

today's issue of APIs by Example, I discuss the dlpar_get_info API as well as introduce you to the

DSPPTNINF command.

In the aforementioned article, the DSPPTNINF command was referenced on the display panel of the

Display System Configuration DSPSYSCFG command presented in that article. Following the

distribution of that issue of the Programming Tips newsletter, I received an email from Bryan Dietz

conveying the following information: "Starting with release 5.3 IBM has started 'point' releases, i.e.,

V5R3M0 of OS and V5R3M5 of Licensed Internal Code (LIC). The same applies for release 5.4 and in

release 6.1 there is a LIC version V6R1M1." I didn't want to miss out on that opportunity, so with this

article, I also include an update of the DSPSYSCFG command supporting the relatively new LIC

release information.

Bryan also noted that in release 5.4, IBM added a Licensed Internal Code VRM option to the

Materialize Machine Attributes (MATMATR) built-in, and he kindly included the code for both this

built-in as well as a release 5.3 workaround employing the Retrieve Product Information

(QSZRTVPR) API to obtain the LIC VRM. I've added both code snippets to the DSPSYSCFG CPP and

the LIC VRM information to the command's display panel and help text panel group.

While I was at it, I also changed the UIM Display Panel API to keep the current page when function

key F5 is pressed in order to refresh the display panel. Some of the information specified on page 2

reflects the current usage of the system resources and is therefore subject to constant change.

Keeping the page displayed when pressing function key F5 allows you to better compare the readings

displayed and to note the actual differences. You'll find the updated DSPSYSCFG source members

with this week's source code zip file. A big thank you to Bryan for both the information and the code

provided.

The dlpar_get_info API and is different from the typical API as it is also indicated by the C-style

documentation explaining it in the General Configuration APIs section of the online API manual.

The dlpar_get_info API requires one output parameter and two input parameters, here presented in

that order:

1. Receiver variable (data structure)

2. Receiver variable format

3. Receiver variable length

Page 1 of 9APIs by Example: Display Partition Information, and a DSPSYSCFG Command Upd...

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-display-partition-infor...

The receiver variable format defined by parameter 2 supports two return data formats, as

documented in the following excerpt from the API manual:

Format of the data to return (data_format)

 INPUT; BINARY(4)

 This parameter determines what information is returned in the

receiver

 variable. The supported formats are:

 Value Description

 1 Partition information that is unlikely to change without

partition IPL

 2 Partition information that may change at any time during

partition

 Operation

 Note: If some fields returned by this API are not supported by the

installed

 version of the hypervisor, these fields will be set to zero.

The information returned by the API is divided into two possible groups, one containing static

partition information and another containing dynamic partition information. Since I include both in

the DSPPTNINF display panel, I'll need to call the API twice, specifying format 1 on the first call and

format 2 on the second call. Further, in the absence of a standard API error data structure to report

any error condition detected by the dlpar_get_info API, the API returns an integer value to indicate

the outcome of the API call. Again I resort to the manual's explanation of the dlpar_get_info API's

return value:

Return Value

 Positive value Partition information was successfully retrieved.

Returned

 value indicates number of bytes returned in the

receiver

 variable.

 Negative value API cannot return data because of error. The

return value

 will be a negative number describing the error, as

follows:

 -1 Specified format is not supported by the API.

 -2 Length of the receiver variable is negative.

 -3 Address of the receiver variable is invalid.

 -4 API encountered an exception during execution.

Page 2 of 9APIs by Example: Display Partition Information, and a DSPSYSCFG Command Upd...

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-display-partition-infor...

 (See job log for the details about the exception)

 -5 Required parameter omitted.

Consequently, in my DSPPTNINF CPP, I make sure to check that the return value following the API

call contains a positive value before processing the data structure returned by the API. Depending on

the context in which the dlpar_get_info API is employed, you could also include code to detect each

of the above possible types of failure and return corresponding exception messages to the caller of

your program. Since the types of errors, however, all indicate some sort of misconception on the API

programmer's side, at the point where I have the API call working correctly, I simply verify that the

API call was successful before continuing the execution path of the CPP.

Another peculiarity facing you when working with the dlpar_get_info API output is the presence of

bit fields in the return variable data structures. Bit fields are used by some APIs to return Boolean

type of information—that is, information that can be expressed by an on or off value, as in yes or no.

This allows you to store up to eight yes/no values in a single byte, as opposed to the eight bytes

required to store this information in one byte each. Other languages, such as C, allow you to map

each bit directly to a program variable; however, RPG does not. In case you're not already familiar

with bit fields, I'll show you how to work with them in RPG in a moment. Both API return formats

contain bit fields, and here's the relevant documentation for format 1:

 Offset

Dec Hex Bit Type Field Description

 44 2C BINARY(4) lpar_flags

 44 2C 0 Bit(30) Reserved Reserved

 47 2F 6 Bit(1) lpar_smtbound Bound hardware threads

indicator.

 If on, hardware threads

are bound.

 47 2F 7 Bit(1) lpar_dedicated Dedicated processors

indicator.

 If on, partition uses

dedicated

 processors.

Return format 1 defines a four-byte integer at decimal offset 44 as lpar_flags. As each byte contains

eight bits, that makes a total of 32 bits. The documentation specifies the first 30 bits (from left to

right) as being reserved for future use. That leaves the two rightmost bits, bit 31 and 32, to define the

values of the two lpar_flags, lpar_smtbound and lpar_dedicated, respectively.

The current recommended approach of evaluating bit values involves the use of the RPG/IV Bitwise

AND Operation %BitAnd() built-in function (BIF). Using %BitAnd(), the variable containing the bit

(s) and a bit mask in the form of a hexadecimal value defining the bits you want to interrogate, you

can determine whether the bit(s) in the bit mask are on or not. At the end of this article, I include a

link to a Q&A article on the topic written by Scott Klement, explaining the %BitAnd() BIF and

approach in more detail.

Alternatively, I sometimes for single bit tests use the Test Bit in String tstbts() MI built-in and C

library function for the same purpose. The tstbts() function requires you to specify the address of the

Page 3 of 9APIs by Example: Display Partition Information, and a DSPSYSCFG Command Upd...

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-display-partition-infor...

variable containing the bit to test as the function's first argument, and the bit number to test as the

second argument. The bits are numbered, left to right, from 0 (zero) and onward. Consequently, in a

single byte the leftmost bit number is 0, and the rightmost bit number is 7. The tstbts() function

returns an integer having the value 0 if the tested bit is off, and 1 if the bit is on.

In the above context, I need to find the value of bits 31 and 32, and given the zero offset mentioned,

that implies to simply subtract 1 from each bit number to find the tstbts() function's second

parameter, in this case adding up to bits 30 and 31, respectively:

 **-- Partition information - format 1 (static):

 D PtnInf01 Ds Qualified

 D FmtVer 10u 0

 D 10u 0

 D MaxMem 20u 0

 D MinMem 20u 0

 D MemInc 20u 0

 D DpcWRT 20u 0

 D LparID 10u 0

 D LparFlags 10u 0

 D MaxPhyPrc 10u 0

 ...

 D LPAR_SMTBOUND c 30

 D LPAR_DEDICATED c 31

 /Free

 LparSmtBnd = tstbts(%Addr(PtnInf01.LparFlags):

LPAR_SMTBOUND);

 LparDdcPrc = tstbts(%Addr(PtnInf01.LparFlags):

LPAR_DEDICATED);

 /End-Free

Another topic surfacing when dealing with the dlpar_get_info API output information relates to time

granularity. Four of the APIs between-IPL CPU time fields are noted in nanoseconds. I must admit

that I had to look up exactly how many nanoseconds fit into one second, and thought I'd spare you

the Google challenge:

 Nanosecond: One billionth of a second (0.000000001) or (10^-9) of a

second or

 1/1000 of a microsecond.

In other words, a nanosecond is a very, very short amount of time...

Anyway, now on to the DSPPTNINF command and display panels. When prompting the

DSPPTNINF command, here's what you'll see:

 Display Partition Information (DSPPTNINF)

Page 4 of 9APIs by Example: Display Partition Information, and a DSPSYSCFG Command Upd...

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-display-partition-infor...

 Type choices, press Enter.

 Output * *, *PRINT

You specify as the only command parameter whether the command output should go to a display

panel or a printed list. Here's what the command would look like if you decided to display the current

partition's information on screen:

 DSPPTNINF OUTPUT(*)

Following the execution of the above command, you'll be presented with a display panel having the

following appearance:

 Display Partition Information

 WYNDHAMW

 18-09-10

 16:59:15

 Partition name : 43-21CBA

 Partition ID : 1

 Logical serial number : 4321CDA1

 Number of partitions : 1

 Firmware level : 16

 Partition group ID : 32769

 Shared processor pool ID : 0

 Minimum memory : 320

 Maximum memory : 16384

 Memory increment : 64

 Defined memory : 15680

Page 5 of 9APIs by Example: Display Partition Information, and a DSPSYSCFG Command Upd...

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-display-partition-infor...

 Online memory : 15680

 Maximum physical processors : 2

 Physical processors in the system . . . : 2

 Physical processors in shared pool . . . : 0

 More...

 F3=Exit F5=Refresh F12=Cancel F19=Display system

configuration

 F20=Work with processor resources F24=More keys

In addition to the partition information displayed, there's a function key shortcut to the DSPSYSCFG

command presented last time as well as a function key to show the full partition name, in case it

exceeds 32 bytes. Function keys F20 and F21 provide access to the Work with Hardware Resources

(WRKHDWRSC) command for processor resources and storage resources, respectively. To display

the second page of partition information, press the Page Down button:

 Display Partition Information

 WYNDHAMW

 18-09-10

 16:59:15

 Minimum/maximum virtual processors . . . : 1 2

 Defined virtual processors : 2

 Online virtual processors : 2

 Minimum/maximum processing capacity . . : 100 200

 Processing capacity increment : 100

 Defined processing capacity : 200

 Minimum required processing capacity . . : 100

 Maximum licensed capacity : 200

 Processing capacity : 200

 Unallocated processing capacity : 0

Page 6 of 9APIs by Example: Display Partition Information, and a DSPSYSCFG Command Upd...

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-display-partition-infor...

 Minimum/maximum interactive capacity . . : 0 10000

 Defined interactive capacity : 10000

 Interactive capacity : 10000

 Interactive threshold : 10000

 Unallocated interactive capacity : 0

 More...

 F3=Exit F5=Refresh F12=Cancel F19=Display system

configuration

 F20=Work with processor resources F24=More keys

To refresh the information displayed, press function key F5. To show the third and final page of

partition information, press the Page Down button:

 Display Partition Information

 WYNDHAMW

 18-09-10

 16:59:15

 Total CPU time : 131896875000000

 Interactive CPU time : 4812306000000

 Interactive CPU time above threshold . . : 0

 Unused CPU time in shared pool : 0

 Variable capacity weight : 0

 Defined variable capacity weight : 0

 Unallocated variable capacity weight . . : 0

 Dispatch wheel rotation time : 10006868

 Dispatch latency : 0

 Bound hardware threads : *YES

Page 7 of 9APIs by Example: Display Partition Information, and a DSPSYSCFG Command Upd...

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-display-partition-infor...

 Dedicated processors : *YES

 Capped partition : *YES

 Shared pool data : *NO

 Hardware multi-threading : *YES

 SMT threads per processor : 2

 Bottom

 F21=Work with storage resources F22=Display entire name

F24=More keys

The display panel and all fields shown are, as always, explained in the cursor-sensitive help text

associated with the display. Just point the cursor to the area or field of interest and press function

key F1 to access the help text provided.

This APIs by Example includes the following sources:

CBX219 -- RPGLE -- Display Partition Information - CPP

CBX219E -- RPGLE -- Display Partition Information - UIM General Exit

CBX219H -- PNLGRP -- Display Partition Information - Help

CBX219P -- PNLGRP -- Display Partition Information - Panel Group

CBX219X -- CMD -- Display Partition Information

CBX219M -- CLP -- Display Partition Information - Build command

To create all these objects, compile and run the CBX219M program, following the instructions in the

source header. You'll also find compilation instructions in the respective source headers.

The following sources have been updated in order to provide LIC release support for the DSPSYSCFG

command:

CBX218 -- RPGLE -- Display System Configuration - CPP

CBX218E -- RPGLE -- Display System Configuration - UIM General Exit

CBX218H -- PNLGRP -- Display System Configuration - Help

CBX218P -- PNLGRP -- Display System Configuration - Panel Group

These sources are included in the DSPPTNINF command source zip file provided at the end of this

article.

Related articles:

Testing Bits in Free-Form RPG

APIs by Example: Tricky Retrieve APIs and How to Process the Receiver Variable

Wiki on Bit Fields

Page 8 of 9APIs by Example: Display Partition Information, and a DSPSYSCFG Command Upd...

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-display-partition-infor...

This article demonstrates the following APIs and MI Built-ins:

Retrieve Partition Information (dlpar_get_info) API

Materialize Machine Attributes (MATMATR) MI Built-in

Test Bit in String (TSTBTS) MI Built-in

i5/OS Machine Interface

Retrieve the source code for this API example.

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-display-partition-

information-and-dspsyscfg-command-update

Page 9 of 9APIs by Example: Display Partition Information, and a DSPSYSCFG Command Upd...

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-display-partition-infor...

