
print | close

APIs by Example: Crypto Key Mgmt-Encrypt/Decrypt with 
Key Hierarchy

System iNetwork Programming Tips Newsletter

Carsten Flensburg

Carsten Flensburg 

Thu, 04/24/2008 (All day) 

If you have followed the APIs by Example articles covering cryptographic key management in general 

and the new key management APIs introduced with release V5R4 in particular, you should now be 

able to establish a three-tier cryptographic key hierarchy that lets you create and manage master 

keys, key encryption keys, and data keys. For anyone needing to read up on this exciting topic, I've 

provided links to all previous articles below.

One important part is still missing in this exercise, however: How to actually put this key hierarchy to 

practical use in a common application context. For this purpose, I have created a couple of CL 

commands that act as an interface to creating and changing customer data records stored in a 

physical data file: Add Customer Record (ADDCUSRCD) and Change Customer Record 

(CHGCUSRCD). The scenario prompting the encryption efforts is the following: One of the fields in 

the customer file contains information of a highly sensitive and confidential nature, and it is 

therefore required that the data stored in this field be stored in an encrypted format.

To begin today's journey, however, let me briefly describe the setup required to implement a three-

tier cryptographic key hierarchy involving the new V5R4 key management facilities:

1. You load and set one or more (up to a maximum of 8) master keys, using the Load Master Key 

Part (LODMSTK) and the Set Master Key (SETMSTK) commands, respectively.

2. You create a key encryption key store using the Create Key Store (CRTKS) command, 

assigning the master key ID of the master key that the system will use to encrypt all keys as 

they are stored in the key store. Likewise, the system will use that master key ID to decrypt the 

keys when they are retrieved from the key store.

3. You generate and add a key encryption key to the newly created key store using the Generate 

Key Record (GENKR) command. To uniquely identify the key encryption key, you specify a 

key label name for the equivalent parameter on the GENKR command. The GENKR command 

also offers a variety of key attributes and properties to be defined, as dictated by your specific 

requirements.

4. You create a data key store using the Create Data Key Store (CRTDTAKS) command. You 

specify a key encryption key store, as well as a key encryption key label, referring to the key 

encryption key, that you want to be used for the encryption of all data keys in the data key 

store.

5. You add a data encryption key to the newly created data key store using the Create Data Key 

(CRTDTAK) command. Again you specify a key label name to identify the data key record as 

Page 1 of 11APIs by Example: Crypto Key Mgmt-Encrypt/Decrypt with Key Hierarchy

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-crypto-key-mgmt-encr...



well as the key length. The Advanced Encryption Standard (AES) algorithm is used for all key 

encryption key and data encryption key operations performed by the CRTDTAK command.

At the end of this article, I provide links to the previous APIs by Example articles introducing and 

delivering the commands mentioned above. Here's an example of how the above prerequisite set of 

commands (2-5) could be executed; I've placed the key stores in library QGPL, but you can of course 

change that to whatever library you prefer:

   2. CRTKS KEYSTORE(QGPL/CBX192) 

            KEYID(1)

   3. GENKR KEYSTORE(QGPL/CBX192)            

            RCDLABEL(CBX_KEK_0001)           

            KEYTYPE(*AES)                    

            KEYSIZE(16)

   4. CRTDTAKS DTAKS(QGPL/CBX192)        

               KEKKS(QGPL/CBX192)        

               KEKLABEL(CBX_KEK_0001)                      

   5. CRTDTAK DTAKS(QGPL/CBX192)       

              KEYLABEL(CBX_DTAK_0001)  

              LENGTH(16)               

              KEY1(*GEN)               

              KEY2(*GEN)               

When you've successfully completed the setup described above, the foundation and encryption key 

infrastructure necessary to encrypt and decrypt data will be in place on your system. The remaining 

part concerns the controlling and execution of the actual data encryption and decryption process. 

The first issue to address is the control data file, preserving the identity of the data encryption key, 

defined by key label and qualified key store name, to be used in the customer data encryption and 

decryption process. Because this sample application involves the creation of customer records, I've 

also included a Last customer number field to help me assign unique customer numbers as I create 

new customer records. Here's the outcome of my efforts:

                         Display File Field Description               

 WYNDHAMW

                                                             20-04-08 

 13:08:57 

  File . . . . . . :   CBX1921F            Record length  . :   60   

   Library  . . . :     QGPL              Field count  . . :   4     

  Record format  . :   CBX1921R                                       

  File type  . . . :   PF                  

  Access path  . . :   *ARRIVAL            

  Field       Data type  Buffer  Length  Dig  Dec  Key   Text         

Page 2 of 11APIs by Example: Crypto Key Mgmt-Encrypt/Decrypt with Key Hierarchy

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-crypto-key-mgmt-encr...



  KEYLBL      Char            1      32                  Key label   

  KEYSTO      Char           33      10                  Key store   

  KEYLIB      Char           43      10                  Key store 

library      

  LSTCUS      Zoned          53       8    8    0        Last 

customer number   

As you will note if you inspect the CBX192 service program included today, I've made the above 

information accessible through subprocedures. This approach enforces encapsulation of the file 

access, as well as simplifies the retrieval of the file data for the programs requiring the information 

stored in the file. The CBX192 service program also contains the subprocedures performing the 

retrieval and update services of the customer file records. Here's the simple customer file record 

layout:

                         Display File Field Description               

 WYNHAMW

                                                             20-04-08 

 13:10:11 

  File . . . . . . :   CBX1922F            Record length  . :   136   

   Library  . . . :     QGPL              Field count  . . :   9     

  Record format  . :   CBX1922R                                       

  File type  . . . :   PF                  

  Access path  . . :   *KEYED                          

  Field       Data type  Buffer  Length  Dig  Dec  Key   Text         

  CUSNBR      Packed          1       5    8    0  1  A  Customer 

number        

  CUSNAM      Char            6      30                  Customer 

name          

  CUSADR      Char           36      30                  Customer 

address       

  CUSCTY      Char           66      20                  Customer 

address       

  CUSZIP      Char           86       5                  Zip code     

  CUSSTT      Char           91       2                  State       

  CUSPHO      Char           93      12                  Phone       

  CUSSSN      Char          105      16                  Social 

Security Number 

  ENCRIV      Char          121      16                 

 Initialization vector  

Page 3 of 11APIs by Example: Crypto Key Mgmt-Encrypt/Decrypt with Key Hierarchy

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-crypto-key-mgmt-encr...



The first seven fields in the CBX1922F customer file contain information that in this context has been 

deemed nonsensitive and therefore will be stored in the file in clear text. The customer's Social 

Security number (SSN) however, I do not want to be immediately accessible. The regular and 

intensive use of query products, interactive SQL, ODBC and JDBC integration to PC clients and other 

facilities providing easy database access and extraction options prompts early and careful 

consideration when planning database encryption requirements. And in this case, an SSN falls within 

the category of data to which you will probably want to control both access and manipulation.

An SSN by definition occupies 9 digits. Because I use the AES algorithm and an encryption block size 

of 16 bytes in this example, I need to define the SSN field size as 16 bytes, because the field size 

required to store the AES encrypted data basically must always be an even multiple of the AES 

encryption block size.

The 16-byte field size also leaves room for the padding performed by the AES encryption algorithm. 

Because of this padding, you must always reserve at least one byte within the encryption block size 

multiple to allow for padding to occur. If, for example, the data to be encrypted occupied the full 16-

byte block size, AES would have added another full block of padding, resulting in a 32-byte-sized 

encryption output (cipher) string.

Some encryption algorithms as well as specific algorithm encryption modes enable an equally sized 

encryption input and output string, but this aspect of course needs to be taken carefully into account 

early on when deciding on encryption algorithms and designing databases.

Another issue to note relates to the definition of the database field to hold the encrypted data. The 

encryption algorithm is always applied to the binary value of the data that is processed, so the 

cryptographic process sees only the bits that it is operating on, not the signs and characters that 

appear to our eyes. That is actually in contrast to the methods and declarations that the database 

applies in order to preserve the appearance of characters and signs across character sets and 

encoding schemes.

To ensure that a cipher string is not made subject to conversion of any type, I need to tag such fields 

with a CCSID value that defines the field's content as a hexadecimal value. This is achieved by 

specifying the CCSID() keyword, with the special value 65535, indicating a hexadecimal content for 

the relevant fields in the CBX1922F DDS source below. Please note that the CCSID keyword is also 

valid for fields defined by SQL DDL statements:

 A          R CBX1922R                                             

  **                                                                

  A            CUSNBR         8P 0       COLHDG('Customer number')  

  A            CUSNAM        30A         COLHDG('Customer' 'name')  

  A            CUSADR        30A         COLHDG('Customer' 'address')

  A            CUSCTY        20A         COLHDG('Customer' 'address')

  A            CUSZIP         5A         COLHDG('Zip code')         

  A            CUSSTT         2A         COLHDG('State')            

  A            CUSPHO        12A         COLHDG('Phone')            

  A            CUSSSN        16A         COLHDG('Social' 'Security' 

'Number')  

  A                                      CCSID(65535)               

  A            ENCRIV        16A         COLHDG('Initialization' 

'vector')

  A                                      CCSID(65535)               

Page 4 of 11APIs by Example: Crypto Key Mgmt-Encrypt/Decrypt with Key Hierarchy

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-crypto-key-mgmt-encr...



  **                                                                

  A          K CUSNBR                               

As you will note, the CCSID(65535) keyword is specified for both the Social Security Number field 

and the Initialization vector field. The latter contains the Initial Chaining Value (or salt) that is 

applied to the encryption process in order to avoid patterns emerging in the encrypted data across 

file records, so a salt is generated and stored in the Initialization vector field for each file record as it 

is created. The data in this field is then used when encrypting or decrypting the SSN. The salt does 

not require any confidentiality, but it needs to be protected against conversion of course, because if it 

is altered following the data encryption, the data decryption process will fail.

At this point, it is time to present the Add Customer Record (ADDCUSRCD) and Change Customer 

Record (CHGCUSRCD) commands, as they are providing the interface to the components and 

infrastructure discussed so far. The ADDCUSRCD command prompt displays the following 

parameters:

                         Add Customer Record (ADDCUSRCD)             

  Type choices, press Enter.                                         

  Customer name  . . . . . . . . .                                   

  Address  . . . . . . . . . . . .                                   

  City . . . . . . . . . . . . . .                                   

  State  . . . . . . . . . . . . .                                   

  Zip code . . . . . . . . . . . .                                   

  Phone number . . . . . . . . . .                                   

  Social security number . . . . .                                   

All the customer data file fields require input, and there's a help text panel group providing a brief 

explanation of the command as well as each parameter. The ADDCUSRCD CPP uses the services 

provided by the CBX192 service program to encrypt and store the data in the CBX1922F data file. 

The customer number assigned to the customer record is returned in the completion message for 

future reference.

When the record is created, you can use the CHGCURRCD command to retrieve and alter the 

customer data. The CHGCUSRCD command prompt will initially display only the customer number 

field, but as soon as the operator enters the relevant customer number and presses Enter, all 

customer data is retrieved and displayed. Here's the full command prompt:

Page 5 of 11APIs by Example: Crypto Key Mgmt-Encrypt/Decrypt with Key Hierarchy

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-crypto-key-mgmt-encr...



                      Change Customer Record (CHGCUSRCD)             

  Type choices, press Enter.                                         

  Customer number  . . . . . . . .                                   

  Customer name  . . . . . . . . .                                   

  Address  . . . . . . . . . . . .                                   

  City . . . . . . . . . . . . . .                                   

  State  . . . . . . . . . . . . .                                   

  Zip code . . . . . . . . . . . .                                   

  Phone number . . . . . . . . . .                                   

  Social security number . . . . .                                   

Again, online help text is provided. To control access to both commands, you'll need to register the 

user profiles requiring access to these commands through the function usage facility, and more 

specifically to the CBX_CRYPTO_KEY_USAGE special function.

The CBX192M CL program included with this article to create all commands and objects will 

automatically register the CBX_CRYPTO_KEY_USAGE special function usage and authorize the 

user profile running the CL program to this function. Adding or removing user profiles to the 

CBX_CRYPTO_KEY_USAGE special function will change these users' access to running the 

ADDCUSRCD and CHGCUSRCD commands accordingly. Here's how you can test that important 

part of the game:

Use DFU or some other data file utility to update the CBX1921F control file. Specify the data key 

label (in the above example, CBX_DTAK_0001) in the KEYLBL field as well as the key store name 

and library in the KEYSTO and KEYLIB fields, respectively. Specify whatever number you want to be 

the initial customer number in the field LSTCUS.

1. Run the command ADDCUSRCD to create a customer record.

2. Run the command RUNQRY *N CBX1922F to verify the record has been added and the SSN 

encrypted.

3. Run the command CHGCUSRCD, specifying the customer number returned in step 5. You 

should now be able to see in clear text the data previously entered. Try to change the data and 

repeat this step to verify the change.

4. Run the command WRKFCNUSG FCNID(CBX_CRYPTO_KEY_USAGE) and remove your 

function usage authorization: Option 2, specify USER() USAGE(*NONE). Now try to run step 

4 again. Remember to reinstate your function usage authorization when your test is complete, 

if required.

Page 6 of 11APIs by Example: Crypto Key Mgmt-Encrypt/Decrypt with Key Hierarchy

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-crypto-key-mgmt-encr...



You can use the following command to locate and change all function usage registrations applying to 

the key management utilities delivered with the Cryptographic Key Management articles in this and 

previous APIs by Example articles:

  WRKFCNUSG FCNID(CBX_CRYPTO_*)

Given that you've successfully loaded and installed the commands and usage registrations provided 

with this and the previous APIs by Example Cryptographic Key Management articles, you should see 

a list similar to the one below, following a successful execution of the command above:

                           Work with Function Usage                   

  Type options, press Enter.                                         

   2=Change usage   5=Display usage                                   

  Opt  Function ID                     Function Name  

      CBX_CRYPTO_KEY_MANAGEMENT       Cryptographic key management

      CBX_CRYPTO_KEY_USAGE            Cryptographic key management   

      CBX_CRYPTO_KEYRECORD_DELETE     Cryptographic key record 

deletion

      CBX_CRYPTO_KEYSTORE_XLATE       Cryptographic key store 

translation      

      CBX_CRYPTO_MASTERKEY_CLEAR      Clear cryptographic master key 

      CBX_CRYPTO_MASTERKEY_LOAD       Cryptographic master key part 

load        

      CBX_CRYPTO_MASTERKEY_SET        Set cryptographic master key   

      CBX_CRYPTO_MASTERKEY_TEST       Cryptographic master key test   

   Bottom

  Parameters for option 2 or command                                 

  ===>                                                               

  F3=Exit   F4=Prompt   F5=Refresh   F9=Retrieve   F12=Cancel   

F17=Top         

  F18=Bottom                                                         

Page 7 of 11APIs by Example: Crypto Key Mgmt-Encrypt/Decrypt with Key Hierarchy

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-crypto-key-mgmt-encr...



Use option 2 to add and/or remove users' function usage. As I mentioned, there's more information 

on function usage registration prerequisites and requirements in an earlier APIs by Example article, 

the one of December 13, 2007 (please follow the link provided below to look up that article).

This APIs by Example includes the following sources:

CBX191   -- RPGLE  -- Cryptographic Data Key Management - services 

(update)   

CBX191B  -- SRVSRC -- Cryptographic Data Key Management - binder 

source (update)

CBX192   -- RPGLE  -- Customer data - services               

CBX192B  -- SRVSRC -- Customer data - binder source          

CBX1921F -- PF     -- Customer control data                  

CBX1922F -- PF     -- Customer data                   

CBX1921  -- RPGLE  -- Add Customer Record                    

CBX1921H -- PNLGRP -- Add Customer Record - Help             

CBX1921V -- RPGLE  -- Add Customer Record - VCP              

CBX1921X -- CMD    -- Add Customer Record                    

CBX1922  -- RPGLE  -- Change Customer Record          

CBX1922H -- PNLGRP -- Change Customer Record - Help   

CBX1922O -- RPGLE  -- Change Customer Record - POP    

CBX1922V -- RPGLE  -- Change Customer Record - VCP    

CBX1922X -- CMD    -- Change Customer Record          

CBX192M  -- CLP    -- Cryptographic Data Key Management - build 

commands             

To create all these objects, compile and run CBX192M, following the instructions in the source 

header. As always, you'll also find compilation instructions in the respective source headers.

Please note that the two previously published commands Add Function Registration (ADDFCNREG) 

and Change User Function Usage (CHGUSRFCNU) are prerequisite for the CBX190M program to 

compile.

You can get the sources for the two aforementioned user function commands with the download 

made available with my previous APIs by Example article of November 8, 2007 -- just follow the link 

provided below. Successfully compiling and running the CBX180M CL setup program included with 

that article is also prerequisite to running the CBX192M setup program included today.

In a previous article series, I've presented similar commands for the very same purpose of 

demonstrating a practical cryptographic programming approach, so in case you've installed the 

previous versions of the ADDCUSRCD and CHGCUSRCD commands, the CBX192M setup program 

will rename the two commands to ADDCUSRCD2 and CHGCUSRCD2, respectively, to prevent them 

from being replaced by the newer versions.

Many of the issues and techniques described and demonstrated in this APIs by Example article and 

code have also been discussed in detail in previously published articles. I have included links to these 

articles below.

Page 8 of 11APIs by Example: Crypto Key Mgmt-Encrypt/Decrypt with Key Hierarchy

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-crypto-key-mgmt-encr...



Before commencing any programming projects involving cryptographic requirements, I urge you to 

read and comprehend all the articles and also the warnings and recommendations stated therein. 

This precaution is especially important before using any of the code provided as part of the APIs by 

Example articles, as it is intended only as a starting point for your own efforts in this interesting but 

challenging programming discipline.

Previously published related articles:

Cryptographic Services APIs: Key Management:

http://systeminetwork.com/article/cryptographic-services-apis-key-management

APIs by Example, July 21, 2005: Cryptographic Services APIs, Part 1:

http://systeminetwork.com/article/apis-example-cryptographic-services-apis

APIs by Example, November 10, 2005: Cryptographic Services APIs, Part 2:

http://systeminetwork.com/article/apis-example-cryptographic-services-apis-part-2

APIs by Example, December 8, 2005: Cryptographic Services APIs, Part 3:

http://systeminetwork.com/article/apis-example-cryptographic-services-apis-part-3

APIs by Example, January 12, 2006: Cryptographic Services APIs, Part 4:

http://systeminetwork.com/article/apis-example-cryptographic-services-apis-part-4

APIs by Example, January 26, 2006: Cryptographic Services APIs, Part 5:

http://systeminetwork.com/article/apis-example-cryptographic-services-apis-part-5

APIs by Example, February 16, 2006: Cryptographic Services APIs, Part 6:

http://systeminetwork.com/article/apis-example-cryptographic-services-apis-part-6

APIs by Example, March 9, 2006: Cryptographic Services APIs, Part 7:

http://systeminetwork.com/article/apis-example-cryptographic-services-apis-part-7

APIs by Example, November 8, 2007: Cryptographic Key Management - Loading and Setting Master 

Keys::

http://systeminetwork.com/article/apis-example-cryptographic-key-management-loading-and-

setting-master-keys

APIs by Example, December 13, 2007: Cryptographic Key Management - Testing and Clearing 

Master Keys:

http://systeminetwork.com/article/apis-example-cryptographic-key-management-testing-and-

clearing-master-keys

APIs by Example, January 24, 2008: Cryptographic Key Management – Creating and Translating 

Key Stores:

http://systeminetwork.com/article/apis-example-cryptographic-key-management-creating-and-

translating-key-stores

APIs by Example, February 28, 2008: Cryptographic Key Management – Creating, Displaying, and 

Deleting Key Records:

http://systeminetwork.com/article/apis-example-cryptographic-key-management-%E2%80%93-

creating-displaying-and-deleting-key-records

APIs by Example, March 28, 2008: Cryptographic Key Management - Creating Data Key Stores and 

More:

Page 9 of 11APIs by Example: Crypto Key Mgmt-Encrypt/Decrypt with Key Hierarchy

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-crypto-key-mgmt-encr...



http://systeminetwork.com/article/apis-example-crypto-key-management-creating-data-key-

stores-and-more

IBM documentation:

Scenario: Key Management and File Encryption Using the Cryptographic Services APIs:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qc3Scenario.htm

Educational White Paper: Protecting i5/OS Data with Encryption:

http://www-03.ibm.com/servers/enable/site/education/abstracts/efbe_abs.html

IBM System i Security: Protecting i5/OS Data with Encryption:

http://www.redbooks.ibm.com/Redbooks.nsf/RedpieceAbstracts/sg247399.html?Open

This article demonstrates the following Cryptographic Services API:

Create Key Store (Qc3CreateKeyStore) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qc3crtks.htm

Generate Key Record (Qc3GenKeyRecord) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qc3genkr.htm

Encrypt Data (Qc3EncryptData) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qc3encdt.htm

Decrypt Data (Qc3DecryptData) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qc3decdt.htm

Translate Data (Qc3TranslateData) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qc3trndt.htm

Generate Symmetric Key (Qc3GenSymmetricKey) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qc3gensk.htm

Generate Pseudorandom Numbers (Qc3GenPRNs) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qc3genprns.htm

Create Algorithm Context (Qc3CreateAlgorithmContext) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qc3crtax.htm

Create Key Context (Qc3CreateKeyContext) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qc3crtkx.htm

Destroy Algorithm Context (Qc3DestroyAlgorithmContext) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qc3desax.htm

Destroy Key Context (Qc3DestroyKeyContext) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qc3deskx.htm

Retrieve Key Record Attributes (Qc3RetrieveKeyRecordAtr) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qc3rtvka.htm

Key Management APIs V5R4:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/catcrypt6.htm

Page 10 of 11APIs by Example: Crypto Key Mgmt-Encrypt/Decrypt with Key Hierarchy

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-crypto-key-mgmt-encr...



Cryptographic Services APIs V5R4:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/catcrypt.htm

Validation List APIs V5R4:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/sec6.htm

You can retrieve the source code for this API example from:

http://www.pentontech.com/IBMContent/Documents/article/56586_572_KeyHierarchy.zip

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-crypto-key-mgmt-

encryptdecrypt-key-hierarchy

Page 11 of 11APIs by Example: Crypto Key Mgmt-Encrypt/Decrypt with Key Hierarchy

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-crypto-key-mgmt-encr...


