APIs by Example: Directing API Output to Output Files Using the SQL CLI APIs Page 1 of 10

ﬂ print | close

APls by Example: Directing APl Output to Output Files
Using the SQL CLI APIs

System iNetwork Programming Tips Newsletter

Carsten Flensburg
Carsten Flensburg
Thu, 02/25/2010 (All day)

Many IBM CL commands provide an output file option that enables the command to direct its output
to a database file for further processing or collection of data over time. Due to the fact that practically
no APIs offer this option, I once in a while I get requests from readers asking me how to provide for
an output file facility to a specific API. This APIs by Example column demonstrates one of the
methods available to accommodate the API output file requirement, and it involves the use of the
SQL Call Level Interface (CLI) APIs.

The example I present uses the List Network Connection (QtocLstNetCnn) API as the source of
information to be stored in an output file, but essentially any list API could have provided the
foundation. When I wrote the List Network Connection (LSTNETCNN) command, it was therefore
my intention that the code could easily be copied and adapted to serve as the starting point for other
similar list API-based output file utilities.

The native CL commands supporting output files typically use model files located in either the QSYS
or the QUSRSYS system libraries. At the point where the command is ready to produce its output,
and if the target file does not already exist, the model file is simply copied to the location specified,
and the output records are added. To avoid the dependency on model files and to keep the file
creation process within the control of the program producing the output going into the file, I decided
to use the SQL CLI APIs for that purpose.

The SQL CLI APIs enable you, among many other things, to both create and insert records into a
database file using SQL statements executed directly from within your program, and because they're
included with the operating system at no charge, the SQL CLI APIs are readily available on any IBM i
system. While RPG/IV embedded SQL from an SQL perspective provides you with many of the same
options as the SQL CLI APIs, an embedded SQL approach requires the SQL Development Kit,
product 5722ST1 at release 5.4, to be licensed and installed, so using the SQL CLI APIs for the
purpose at hand eliminates those concerns.

The SQL CLI API topic as such has been covered to an impressive extent in a number of articles
written by Scott Klement, the editor of this newsletter, so I've kept that part out of scope of this
article and included links to a list of previously published SQL CLI articles below. I will of course go
through the specific use of the SQL CLI APIs in the code accompanying this article, but for a broader
introduction to this topic, I recommend you look up the mentioned articles. Also note that the
LSTNETCNN CPP takes advantage of the SQLCLI_H copy member created by Scott Klement and
included with the listed articles, so be sure to follow the instructions at the end of this article in order
to download this copy member before attempting the creation of the LSTNETCNN command objects.

The QtocLstNetCnn API offers two almost identical return formats, one for Internet Protocol version
4 (IPv4) connections and another for Internet Protocol version 6 (IPv6) connections. The task of

http://iprodeveloper.com/print/rpg-programming/apis-example-directing-api-output-o... 04-04-2014

APIs by Example: Directing API Output to Output Files Using the SQL CLI APIs

Page 2 of 10

combining the two formats into a single output file format capable of holding the API output,
irrespective of IP version, is not all that difficult. Here's a list of the information available:

« Remote IP address

« Local IP address

« Remote port
 Local port

« TCP state

« Idle time

» Bytesin

« Bytes out

» Connection open type
« Net connection type
« Line description (IPv6 only)

I add the following fields to complete the output file format:

» IP version (4=IPv4, 6=1Pv6)
» TCP state code (LSTN, SYNR, SYNS, EST, FIN1, etc.)

Only a few SQL statements are required to create and label the output file and its fields

appropriately. This is naturally the part of the CPP that will need to be adapted in order to support a
different output file format. Once the SQL CLI environment has been initialized and a connection has
been made to the local database, the following statement will take care of creating a file by the name
and library location specified on input to the program and stored in qualified format in the SQLTable

variable:

SQLStmt =

'CREATE TABLE ' + SQLTable + ' ('

'IPVERS CHAR (1) NOT NULL WITH
'RMTADR CHAR (45) NOT NULL WITH
'LOCADR CHAR (45) NOT NULL WITH

'RMTPRT NUMERIC
'LOCPRT NUMERIC
'TCPSTT NUMERIC
'IDLTIM NUMERIC (

(NOT NULL WITH

(

(

1
'"BYTIN NUMERIC (2

2

(1

)
) NOT NULL WITH
) NOT NULL WITH
) NOT NULL WITH
) NOT NULL WITH
) NOT NULL WITH
0) NOT NULL WITH
NOT NULL WITH
NOT NULL WITH
NOT NULL WITH
NOT NULL WITH

'BYTOUT NUMERIC (
'CNNOPT NUMERIC
'"NETCNT CHAR (10
'JOBUSR CHAR
'LINDSC CHAR
'"TCPSTC CHAR (10
') RCDFMT NETCNNR';

o O

rc = SQLExecDirect (stmt: SQLStmt: SQL NTS);

DEFAULT,
DEFAULT,
DEFAULT,
DEFAULT,
DEFAULT,
DEFAULT,
DEFAULT,
DEFAULT,
DEFAULT,
DEFAULT,
DEFAULT,
DEFAULT,
DEFAULT,
DEFAULT'

+ + + + + + + + + + + + + + +

The SQLExecDirect() API executes the SQL statement stored in the SQLStmt variable immediately.
In order to provide a descriptive text for the newly created file as well as column headings for the
file's fields, the following two SQL statements and their subsequent execution will do the job:

SQLStmt =

'LABEL ON TABLE ' + SQLTable + ' IS
'"TCP/IP network connections list';

http://iprodeveloper.com/print/rpg-programming/apis-example-directing-api-output-o...

04-04-2014

APIs by Example: Directing API Output to Output Files Using the SQL CLI APIs

|l 1

rc = SQLExecDirect (stmt: SQLStmt: SQL NTS);

SQLStmt = 'LABEL ON COLUMN ' + SQLTable +
'"(IPVERS IS 'TCP/IP version', '
'RMTADR IS 'Remote address', '

'LOCADR
'RMTPRT
'LOCPRT
'"TCPSTT
'IDLTIM
'BYTIN

'BYTOUT
'CNNOPT
'"NETCNT
'JOBUSR
'LINDSC
'TCPSTC

rc = SQLExecDirect (

IS 'Local address', '
IS 'Remote port', '
IS 'Local port',
IS 'TCP state',
IS 'Idle time',
IS 'Bytes in', '
IS 'Bytes out',

IS 'Conn. open type', '
IS 'Net conn. type', '
IS 'Assoc. user profile',

|l

|l

\l

IS 'Line description', '
IS '"TCP state code')';

stmt:

SQLStmt:

SQL_NTS) ;

To also include a text attribute for each field, I execute the statement below:

SQLStmt = 'LABEL ON COLUMN ' + SQLTable +

' (IPVERS TEXT IS

'RMTADR
'LOCADR
'RMTPRT
'LOCPRT
'"TCPSTT
'IDLTIM
'BYTIN

'BYTOUT
'CNNOPT
'"NETCNT
'JOBUSR
'LINDSC
'TCPSTC

rc = SQLExecDirect (

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS

stmt:

'4=1PpPv4,

\l '

6=IPv6', '

'Formatted address', '

'Formatted address', '
'0-65535", !
'1-65535", !

'0-11",

'Milliseconds

|l

'Byte count', '
'Byte count', '
1=Act, 2=n/s', '

'0=Pas,

'*TCP, *UDP,

'"Profile name',

'Object name',

|l

'State abbrev.'

SQLStmt:

(ms) ', '

*IPS', !

|l

) '

SQL _NTS) ;

+ + + + + + + + + + + + +

+ + + + + + + + + + A+ 4+ o+

Page 3 of 10

None of the three LABEL ON statements are of course mandatory in terms of being able to store the
API output, but spending the little extra effort will make it much easier and comprehensible to work
with the file and its content later. The next step is to prepare the actual insert of the output file

records. The SQL insert statement follows common SQL syntax rules, naming the file name to insert
records into as well as the fields targeted by the operation:

SQLStmt = 'INSERT

' (IPVERS,

INTO

A}

+ SQLTable + ' '

' IDLTIM, BYTIN, BYTOUT,

' LINDSC,

TCPSTC) '

CNNOPT,

RMTADR, LOCADR, RMTPRT, LOCPRT,

NETCNT,

1 LI
VALUES (?,?2,2,72,2,2,2,2,2,2,2,2,2,?2)";

TCPSTT, '
JOBUSR, '

http://iprodeveloper.com/print/rpg-programming/apis-example-directing-api-output-o...

+ + + o+

04-04-2014

APIs by Example: Directing API Output to Output Files Using the SQL CLI APIs

Page 4 of 10

The VALUES keyword, however, specifies only question marks in place of the actual values. The
question marks are called parameter markers in this context. Each parameter marker designates a
value to be specified at statement execution time. How that is done, I'll show you in a moment, for
now I will simply have the SQLPrepare() API process the above statement:

rc = SQLPrepare(stmt:

SQLStmt:

SQL NTS) ;

The SQLPrepare() API associates the SQL statement specified in the second parameter with the
input statement handle specified as the first parameter. Following the prepare process, other SQL
CLI APIs have access to the prepared SQL statement when the statement handle is specified as input
to these APIs. All that remains now is to tie each parameter marker to the location where the value to
replace the parameter marker at SQL statement execution time is found. To do so I create a data
structure capable of holding all the QtocLstNetCnn API-supplied network connection information

that should go into the output file:

**-— SQL insert values:
D SQLValue Ds
D IpVers

D RmtAdr

D LocAdr

D RmtPrt

D LocPrt

D TcpStt

D IdlTim

D BytlIn

D BytOut

D CnnOpt

D NetCnt

D JobUsr

D LinDsc

D TcpStc

Qualified

la
45a
45a
5s
5s
5s
10s
20s
20s
1s
10a
10a
10a
5a

O O O O O O O

For each parameter marker and in the same order as specified on the SQL INSERT INTO statement
previously prepared, I then call the SQLBindParameter() API, as in the following example, binding
the first parameter marker to the SQLValue.IpVers variable and likewise with the remaining

variables:

rc = SQLBindParameter (

rc = SQLBindParameter (

http://iprodeveloper.com/print/rpg-programming/apis-example-directing-api-output-o...

stmt

1

SQL PARAM INPUT

SQL CHAR

SQL CHAR

%$Size (SQLValue.IpVers)
*Zero

%Addr (SQLValue.IpVers)
SQL_IGN_INT

lenParml

stmt

4

04-04-2014

APIs by Example: Directing API Output to Output Files Using the SQL CLI APIs

SQL_PARAM INPUT

SQL NUMERIC

SQL NUMERIC
SQLValue.RmtPrt)
$DecPos (SQLValue.RmtPrt)
$Addr (SQLValue.RmtPrt)
SQL_IGN INT

*Omit

$Len (

Page 5 of 10

Here's a brief explanation of each of the SQLBindParameter() API parameters, as they apply to the

context given here:

1. The statement handle identifying the previously prepared SQL statement.

2. Parameter marker number, ordered sequentially left to right, starting at 1.

3. The type of parameter. Primarily relevant for stored procedure calls. The
SQL_PARAM_INPUT constant is used here.

4. The C programming language data type of the parameter. See API documentation for more

information.

SARd

The SQL data type of the parameter. Same value as specified for parameter 4.
The precision or maximum length of the corresponding parameter marker.

7. Scale of the corresponding parameter if packed or zoned (SQL_DECIMAL or
SQL_NUMERIC). Also used to specify timestamp sub-second precision, otherwise ignored.
8. Parameter value pointer. The address of the program variable containing the parameter value

at SQL statement execution time.
9. Not used.

10. The program integer variable containing the length of the character variable specified for
parameter 8. Note that the length is taken at SQL statement execution time, so it is important
that the variable specified for this parameter is an exact match to the API prototype. This to
ensure that the compiler does not assign a temporary variable, which could possibly contain
an unexpected value at execution time.

In this example, I've used zoned numeric variables, but if you, for example, prefer packed decimal,
simply change the relevant SQLValue source variable's data type to p(acked), parameters 4 and 5 to
SQL_DECIMAL, and the SQL CREATE TABLE statement accordingly. Here's an adapted version of

the code demonstrating that:

**—-— SQL insert values:
D SQLValue Ds Qualified
D IpVers la
D RmtAdr 45a
D LocAdr 45a
D RmtPrt 5p 0
SQOLStmt = 'CREATE TABLE ' + SQLTable + ' ('
'IPVERS CHAR (1) NOT NULL WITH DEFAULT,
'RMTADR CHAR (45) NOT NULL WITH DEFAULT,
'LOCADR CHAR (45) NOT NULL WITH DEFAULT,
'RMTPRT DECIMAL (5,0) NOT NULL WITH DEFAULT,
rc = SQLBindParameter (stmt

+ 4+ + +

http://iprodeveloper.com/print/rpg-programming/apis-example-directing-api-output-o...

04-04-2014

APIs by Example: Directing API Output to Output Files Using the SQL CLI APIs Page 6 of 10

4

SQL_PARAM INPUT

SQL DECIMAL

SQL DECIMAL

$Len (SQLValue.RmtPrt)
$DecPos (SQLValue.RmtPrt)
%$Addr (SQLValue.RmtPrt)
SQL_IGN INT

*Omit

Note that in the SQL CLI API code examples accompanying the SQL CLI articles previously referred
to, the SQLBindParam() API is usually employed to establish the correlation between SQL statement
parameter marker and corresponding program variables. The SQLBindParameter() API is a later and
enhanced version of the original SQLBindParam() API. Both APIs are still supported by IBM, but the
former is now recommended by IBM to be used in new code, as support of the latter might be
withdrawn at some point in the future.

At this point everything is ready for the network connection information to be inserted into the
output file. So I call the QtocLstNetCnn API and process all the data returned by the API to the user
space specified on the API call. This follows the normal conventions applying to processing output
from list APIs, which return information by means of user spaces. If you're interested in more details
on this subject, I've included a link below to an article offering a thorough explanation. Finally, for
each API list record extracted from the user space, I load the information from the API output
structure to the corresponding fields in the SQLValue data structure, and then I run the SQLExecute
() API to execute the SQL INTO statement prepared earlier:

If PxIpVers = '4"';
SQLValue.IpVers = '4"';
SQLValue.RmtAdr = NCNNO10O.RmtAdr;
SQLValue.LocAdr = NCNNO10O.LocAdr;
SQLValue.RmtPrt = NCNNO10O.RmtPort;

SQLValue.JobUsr = NCNNO10O.AscUsrPrf;

SQLValue.LinDsc = *Blanks;

SQLValue.TcpStc = GetTcpStt (NCNNO10O.TcpState);
Else;

SQLValue.IpVers = '6';

SQLValue.RmtAdr = NCNNO200.RmtAdr;

SQLValue.LocAdr = NCNN0200.LocAdr;

SQLValue.RmtPrt = NCNNO200.RmtPort;

SQLValue.JobUsr = NCNN0200.AscUsrPrf;

SQLValue.LinDsc = NCNN0200.LinDsc;

SQLValue.TcpStc = GetTcpStt (NCNNO200.TcpState);
EndIf;

rc = SQLExecute(stmt);

This will insert one record into the output file, and I'll then simply repeat the above process until all
API output records have been inserted. As you will see if you take a closer look at the LSTNETCNN

http://iprodeveloper.com/print/rpg-programming/apis-example-directing-api-output-o...

04-04-2014

APIs by Example: Directing API Output to Output Files Using the SQL CLI APIs Page 7 of 10

CPP, there are some SQL CLI environment initialization and cleanup steps involved also, but in
order to reuse the code presented here for other list APIs, the steps discussed above are the ones you
will need to adapt in order to make output file part work. As for the SQL CLI approach in its entirety,
you'll find all the details explained in the articles located at the links below, as for example "Retrieve
an SQL Result Set with RPG."

Now back to the LSTNETCNN command. I've included the command prompt displaying all the
command's parameters below, although normally only the appropriate (IPv4 or IPv6) address range
parameters are displayed, depending on the input in the IP version parameter:

List Network Connections (LSTNETCNN)

Type choices, press Enter.

Output file Name
Library *LIBL Name, *LIBL,
*CURLIB
Replace or add records *ADD *REPLACE, *ADD
IP version < « . . . *1PV4 *IPV4, *IPVG6

Local IPv4 address range:

Lower value *
Upper value *ONLY
Local IPv6 address range:

Lower value D, *

Upper value *ONLY

Local port range:

Lower value * 1-65535, *
Upper value *ONLY 1-65535, *ONLY
Remote IPv4 address range:

Lower value e e e e e e e e *

http://iprodeveloper.com/print/rpg-programming/apis-example-directing-api-output-o... 04-04-2014

APIs by Example: Directing API Output to Output Files Using the SQL CLI APIs Page 8 of 10

Upper value *ONLY
Remote IPv6 address range:

Lower value e e e e e e e e *

Upper value *ONLY

Remote port range:

Lower value * 1-65535, *

Upper value *ONLY 1-65535, *ONLY

You'll note that in contrast to the IBM command output file convention, there's no option of
specifying a file member. IBM commands create output files with a MAXMBRS(*NOMAX) attribute
and allow you to specify a member name, in turn providing an option to add more members to the
same output file. Since SQL has no notion of file members and files created by the SQL. CREATE
TABLE statement consequently allow only one member, the SQL CLI API approach chosen for the
LSTNETCNN command effectively eliminates multi-member support for this command.

Any attempt to change an SQL table's MAXMBRS attribute to a value exceeding 1 is honored with the
diagnostic message CPD3213 Maximum-member value not valid for file &1 followed by escape
message CPF7304.

The command and its parameters are documented in full detail in the online help text panel group,
but here are some additional comments: You specify the library qualified name of the output file. If it
does not exist, it will be created using the SQL CLI API calls described above. If the file already exists,
you have the option of specifying whether the generated output should be added to the records
already found in the output file, if any, or whether the current record content should be replaced. In
the latter case, the output file is cleared prior to running the list request, irrespective of records being
found or not.

The QtocLstNetCnn API supports a connection list qualifier parameter for each of the two Internet
Protocol versions. The selection parameters included in the API list qualifier data structure are
exposed by the LSTNETCNN command's IP address and port range selection parameters. You have
the option of limiting the network connection list output to a specified local or remote IP address
range and/or a local or remote port range.

The LSTNETCNN command uses the inet_pton() Sockets Network API to validate any IP addresses
specified for the IPv4 or IPv6 address ranges. The primary purpose of this API is to convert an IPv4
or IPv6 address in its standard text presentation form into its numeric binary form, a capacity also
employed by the LSTNETCNN command in setting up the API list qualifier parameter, which
depends on the binary IP address format. But the inet_pton() API is also useful in terms of IP
address validation as its return value indicates any of the three following possible outcomes of the
conversion operation:

http://iprodeveloper.com/print/rpg-programming/apis-example-directing-api-output-o... 04-04-2014

APIs by Example: Directing API Output to Output Files Using the SQL CLI APIs Page 9 of 10

1 = Conversion operation was successful
0 = Conversion operation was not successful: Input format is not a
valid IPv4
or IPv6 address string
-1 = Conversion operation was not successful: Call error detected by
APT

A return value of -1 indicates the API call itself ended in error, while a return value of zero signals
that the format of the specified IP address was not valid. So once you get the API call working, you'll
either get a zero or a 1 back from the API, depending on whether the specified IP address is valid. The
LSTNETCNN command also verifies the record format level identifier of a specified existing output
file to ensure that no attempts are made to direct output to a file with an invalid record format.

This verification is based on the List Record Format (QUSLRCD) API and the valid record format
identifier stored in the CPP. The latter is obtained using the Display File Description (DSPFD)
command following the first successful execution of the LSTNETCNN command and subsequently
entered into the CPP's FMT__LVLID global constant, upon which the program is recompiled. The
valid format level identifier for the LSTNETCNN command specifies the following value:

D FMT LVLID ¢ '30E055F0F9848"

In case you change the LSTNETCNN output file format or use the CPP as a starting point for you own
list commands, you'll consequently need to update the FMT_LVLID constant to reflect the change
accordingly. Also please consider that I've added code to take care of possible messages being sent
from the SQL CLI APIs to your job's job log. Especially if you run the command in debug mode, you'll
see a lot of SQL CLI messages being sent to the job log. This is in accordance with the way the SQL
runtime in general behaves when detecting debug mode being active. If you decide to preserve this
behavior, you'll want to eliminate the RmvLogLst() function call in the CPP.

This APIs by Example includes the following sources:

CBX212 -—- RPGLE -- List Network Connections - CPP

CBX212H -- PNLGRP -- List Network Connections - Help

CBX212V —-- RPGLE -- List Network Connections - VCP

CBX212X -- CMD -— List Network Connections

CBX212M -- CLP -- List Network Connections - Build command

To create all these List Network Connection command objects, compile and run the CBX212M
program, following the instructions in the source header. As always, the compilation instructions are
also included in the respective source headers.

For the LSTNETCNN command processing program CBX212 to compile, you'll need to download
and copy the SQLCLI__H member mentioned earlier to a QRPGLESRC source file in your job's
library list. At the very end of this article, I've provided a link to a zip file containing the correct
version of the SQLCLI_H copy member. In addition to the SQLCLI_H member, I've also in my code
included and adapted the generic SQL CLI API Check_error() function introduced by Scott Klement
in his SQL CLI API article series. Many thanks to Scott!

SQL CLI API related articles:

Read and Write LOBs from an RPG Pointer Field

http://iprodeveloper.com/print/rpg-programming/apis-example-directing-api-output-o... 04-04-2014

APIs by Example: Directing API Output to Output Files Using the SQL CLI APIs Page 10 of 10

Retrieve an SQL Result Set from a Stored Procedure with Parameters

Fetch Multiple Records with SQL CLI

Websites with SQL CLI Information

Retrieve an SQL Result Set with RPG

Database Access from CL with SQL CLI

Efficient Character Processing with CLI

IBM SQL CLI Documentation:

DB2 UDB CLI functions - 5.4

Call Level Interface (CLI) APIs - 5.4

SQL call level interface - 5.4

Data types and data conversion in DB2 for i5/0S CLI functions

Determining equivalent SQL and ILE RPG data types

Differences between DB2 UDB CLI and embedded SQL

SQL CLI Frequently Asked Questions

SOL CLI What's new for V6R1

Technical document: OS/400 and i5/0S SQL CLI (ODBC) Documentation and FAQs

DB2 for i Tips & Technical Papers - SOL CLI

Technical reference: CLI Programs in RPG

User Space List API article:

APIs by Example: Retrieve Subsystem Entries API

This article demonstrates the following TCP/IP Management & Socket Network APIs:

The List Network Connections (QtocLstNetCnn) API

Convert IPv4 and IPv6 Addresses Between Text and Binary Form Function

Retrieve the source code for this API example.
The prerequisite SQLCLI H copy member is available as part 56657 600 CliClob.zip.

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-directing-api-output-

output-files-using-sql-cli-apis

http://iprodeveloper.com/print/rpg-programming/apis-example-directing-api-output-o... 04-04-2014

