APIs by Example: Security APIs - and Transfer of User Object Ownership Page 1 of 5

ﬂ print | close

APIs by Example: Security APIs - and Transfer of User
Object Ownership

System iNetwork Programming Tips Newsletter

Carsten Flensburg
Carsten Flensburg
Thu, 04/22/2010 (All day)

The Security API topic is one of the most comprehensive in the IBM i Information Center API
section. In release 6.1, the security APIs are divided into eight subcategories, including Security-
related APIs, Digital Certificate Management APIs, User Function Registration APIs, and Validation
List APIs, to mention a few. And each subcategory comprises many APIs. One of the largest groups is
the Security-related APIs, from which I've picked an API for today's issue of APIs by Example.

The API in question was given the rather lengthy name of List Objects a User Is Authorized to, Owns,
or Is Primary Group of (QSYLOBJA) API. The API capacity demonstrated here relates to object
ownership. For a specified user profile the QSYLOBJA API lists all objects owned by the user profile
to a user space. From there on, the object list is processed using the Retrieve Pointer to User Space
(QUSRPTRUS) API and pointer arithmetic. In this API example I use the QSYLOBJA API-produced
object list as the foundation for a CL command that lets you transfer object ownership from one user
profile to another.

The QSYLOBJA API is capable of listing objects in the QSYS.LIB file system and the IFS (i.e., objects
in a library and objects in a directory, respectively). Due to the difference in naming and qualification
of these two types of objects, you will, however, need to do either one or the other when you call the
API. The object type is implied in the return format name, as documented in the following list of
return formats:

« OBJAO0100: Each entry contains the object name, library, type, authority holder indicator,
ownership indicator, auxiliary storage pool (ASP) device name of library, and ASP device
name of object.

« OBJAo110: This format only returns path names for objects in a directory. Each entry contains
the offset to the path name, the length of the path name, type, authority holder indicator,
ownership indicator, ASP device name of object, and the path name value.

« OBJA0200: Each entry contains the same information as format OBJA0100 plus the authority
values.

« OBJAo0210: This format only returns path names for objects in a directory. Each entry
contains the same information as format OBJAo0110 plus the authority values.

+ OBJA0300: Each entry contains the same information as format OBJA0200 plus the object
attribute and descriptive text.

» OBJAO0310: This format only returns path names for objects in a directory. Each entry
contains the same information as format OBJA0210 plus the attribute and descriptive text.

As for the QSYLOBJA API's remaining parameters, here's an excerpt from the release 6.1 API
documentation in the Information Center documenting the API interface in its entirety:

http://iprodeveloper.com/print/rpg-programming/apis-example-security-apis-and-tran... 04-04-2014

APIs by Example: Security APIs - and Transfer of User Object Ownership Page 2 of 5

Required Parameter Group:

1 Qualified user space name Input Char (20)
2 Format name Input Char (8)

3 User profile name Input Char (10)
4 Object type Input Char (10)
5 Returned objects Input Char (10)
S Continuation handle Input Char (20)
7 Error code I/0 Char (*)

Optional Parameter Group:

8 Request list Input Char (*)

The Qualified user space name designates the user space to which the API output is directed. The
User profile name parameter defines the user profile for which the object list is generated. In the
context of this API, this implies that the user profile is either the object's owner, primary group
profile, or is privately authorized to the object. Which qualification applies is defined by the fifth
parameter, Returned objects, in conjunction with the final and optional parameter, Request list. The
Returned objects parameter allows the following special values to be specified:

*OBJAUT The list of objects the user is authorized to is
returned.

*OBJOWN The list of objects the user owns is returned.

*BOTH The list of objects the user is authorized to and owns is
returned.

The list of owned objects precedes the list of authorized
objects.
*REQLIST The values specified in the request list parameter is
used.

At the time the QSYLOBJA API was introduced, only object ownership and object private
authorization were applicable because, at that point, the concept of object primary group had not yet
been implemented. When the object primary group attribute was introduced, the optional Request
list parameter was added as well as the Returned object parameter special value *REQLIST. The
latter indicating that the former would hold the actual values qualifying which object access relations
to include in the API list output.

Consequently the Request list parameter allows for an array of 10-character values to be specified,
thus providing for any combination of the following special values, including the *OBJPGP special
value added to support object primary group qualification:

*OBJAUT Returns the list of objects the user is authorized to.
*OBJOWN Returns the list of objects the user owns.
*OBJPGP Returns the list of objects that the user is the primary

group for.
The object type parameter enables you to limit the list of objects to the specified object type only. For

directory objects, file system object types such as *DIR and *STMF are supported, defining
directories and stream files, respectively. Beyond the *ALLIFS special value targeting all directory

http://iprodeveloper.com/print/rpg-programming/apis-example-security-apis-and-tran... 04-04-2014

APIs by Example: Security APIs - and Transfer of User Object Ownership Page 3 of 5

objects, the TFROBJOWN command supports only the *DIR and *STMF special values but is easily
enhanced in case other IFS object types would require individual processing.

The Continuation handle parameter originates in the circumstance that the maximum size of a user
space is 16,776,704 bytes, or approximately 16 MB. In the event that the returned list exceeds this
limit, the QSYLOBJA API returns a continuation handle in the Header Section of the data written to
the user space. Specifying this continuation handle on a subsequent call to the API will cause it to
continue the object list where it left off on the previous call, as opposed to a blank continuation
handle leading to the list being built from the top. In essence, what you need to do is keep calling the
QSYLOBJA API and process the object list returned as long as a valid continuation handle is
returned and until the object list is exhausted.

The presence of a valid continuation handle is signaled by the letter "P" in the Information Status
field in the user space generic header section. The letter "P" in this context translates to: "The
information returned in the user space is valid but incomplete," (i.e., Partial). An information status
of "C" indicates that the returned list is valid and complete, while a status of "I" is returned in case
the data in the list is invalid and the continuation handle therefore is undefined.

The header section containing the continuation handle also includes the user profile name actually
used for building the list. If the special value *CURRENT was specified for the User profile name
input parameter, this field will contain the name of the user profile resolved. Additionally a Reason
code is available in the header section, specifying if the choice of return format caused any objects
qualifying for the list to be excluded. This would be the case if for example directory objects were
found but the return format specified support library objects only.

The API error code parameter has been discussed and explained in great detail in articles previously
published, so I've included links to a couple of these at the end of this article. As for the exercise of
processing List API output in a user space, a walkthrough of this procedure is offered in the APIs by
Example article Retrieve Subsystem Entries API to which a link is included below also. To see for
yourself how the pieces fit together, if in doubt, I suggest you run the TFROBJOWN command
processing program CBX214 in the source debugger, while the command is executing.

Speaking of which, the TFROBJOWN command prompt panel has the following appearance,
including a conditional parameter at the end:

Transfer Object Owner (TFROBJOWN)

Type choices, press Enter.

Object type *ALL, *ALLLIB,
*ALLIFS...

Current owner Name

New owner C e e e e e e e e Name

Current owner authority *REVOKE *REVOKE, *SAME

Omit object type *NONE *NONE, *ALRTBL,

http://iprodeveloper.com/print/rpg-programming/apis-example-security-apis-and-tran... 04-04-2014

APIs by Example: Security APIs - and Transfer of User Object Ownership

*AUTL. ..

+ for more values

Page 4 of 5

The Omit object type parameter applies to library objects and is therefore only displayed if the
specified Object type warrants objects of this type to be selected. The Object type parameter, in
addition to regular object types such as *FILE, *PGM, and *DTAQ, supports the following special
values:

*ALL All objects, both library and directory objects, are
processed

*ALLLIB All library objects (QSYS.LIB) are processed

*ALLIFS All directory (IFS) objects are processed

You specify the name of the user profile whose object ownership should be transferred for the
Current owner parameter and the user profile receiving object ownership for the New owner
parameter. The Current owner authority parameter defines whether the current owner should retain
the current private authority to the object, following the ownership transfer. For library objects, you
further have the option of specifying up to 10 object types to omit when performing the object
ownership transfer. The command and all its parameters are also documented in detail in the
accompanying help text panel group.

Here's an example of how it would look if you wanted to transfer all library objects except message
queues and user profiles owned by user profile USERA to user profile USERB:

TFROBJOWN OBJTYPE (*ALLLIB)
CUROWN (USERA)
NEWOWN (USERB)
CUROWNAUT (*REVOKE)
OMITTYPE (*MSGQ *USRPRF)

Following the successful execution of the above command, you'll receive a completion message
indicating how many of the selected objects whose ownership were transferred correctly and how
many, if any, objects that failed in the attempt to transfer their ownership.

The TFROBJOWN command, depending on the object type of the object in question, employs the
Change Object Owner (CHGOBJOWN) and the Change Owner (CHGOWN) commands to perform
the ownership transfer and leaves the completion or diagnostic messages issued by these commands
in the job log of the job running the TFROBJOWN command. Using the Display Job Log
(DSPJOBLOG) command, you then have the option of investigating the exact outcome following the
execution of the TFROBJOWN command.

In the event one of the change commands is failing, the diagnostic and exception messages generated
are also returned as diagnostic messages to the caller of the TFROBJOWN command, preceding the
aforementioned completion message.

This APIs by Example includes the following sources:

http://iprodeveloper.com/print/rpg-programming/apis-example-security-apis-and-tran...

04-04-2014

APIs by Example: Security APIs - and Transfer of User Object Ownership Page 5 of 5

CBX214 -- RPGLE -- Transfer Object Owner - CPP

CBX214H -- PNLGRP -- Transfer Object Owner - Help

CBX214V -- RPGLE -- Transfer Object Owner - VCP

CBX214X -- CMD -- Transfer Object Owner

CBX214M -- CLP -- Transfer Object Owner - Build command

To create all the TFROBJOWN command objects, compile and run the CBX214M program, following
the instructions in the source header. You can also find compilation instructions in the respective
source headers.

This APIs by Example article is based on a suggestion submitted by Peter Kemp, of Australia. If you
have any ideas or suggestions for me to cover in future APIs by Example articles, please forward
these to me at flensburg@novasol.dk.

Related Articles:

APIs by Example: Retrieve Subsystem Entries API

APIs by Example: Check Object Authority

Getting Started with APIs, Part 2—Error Handling

APIs by Example: Using the ERRC0200 Data Structure

This article demonstrates the following Security APIs:

List Objects a User Is Authorized to, Owns, or Is Primary Group of (QSYLOBJA) API

Security-related APIs

Security APIs

Retrieve the source code for this API example.

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-security-apis-and-

transfer-user-object-ownership

http://iprodeveloper.com/print/rpg-programming/apis-example-security-apis-and-tran... 04-04-2014

