APIs by Example: Physical File Triggers and the QDBRTVFD API Page 1 of 5

ﬂ print | close

APIs by Example: Physical File Triggers and the
QDBRTVFD API

iPro Developer

Carsten Flensburg

Carsten Flensburg

Tue, 04/24/2012 - 6:00am

Accessing physical file trigger details is easy with this API

Click here to download the code bundle. In the words of the API manual, the Retrieve
Database File Description (QDBRTVFD) API
"allows you to get complete and specific
information about a file on a local or remote system." This statement is certainly no exaggeration. At
times, you may find the amount and complexity of the information returned by the QDBRTVFD API
slightly overwhelming. To show how this API works, I exploit QDBRTVFD to gain access to details
about the triggers associated with a specified physical file.

To report code errors, email iProDeveloper.com

When it comes to creating and managing physical file triggers, we can use native CL commands and
SQL statements, but so far, we still lack a CL. command for listing and working with the triggers
defined for a physical file. Employing the QDBRTVFD API and User Interface Manager
programming techniques, however, provides an easy solution for that insufficient situation. Here, we
look at the new Work with Physical File (WRKPFTRG) command, based on the trigger information
that the QDBRTVFD API makes available. (To download the code bundle for this command, go to
iProDeveloper.com/code.)

QDBRTVFD's Parameters

Let's begin with a look at the QDBRTVFD API parameter list (Figure 1), as documented by IBM in
the online Information Center. QDBRTVFD will put the requested file information in the first
parameter, Receiver variable. The second parameter tells the APT how much space is available in
terms of receiver variable length in bytes. If QDBRTVFD deems the initial storage allocated for the
return variable as insufficient, the API returns the actual size needed in the Bytes available subfield
of the return variable; this amount of storage is then reallocated and the API call subsequently
repeated.

Figure 1: The QDBRTVFD API required parameter group

1 Receiver variable Output Char (*)

2 Length of receiver variable Input Binary (4)
3 Qualified returned file name Output Char (20)
4 Format name Input Char (8)

5 Qualified file name Input Char (20)
6 Record format name Input Char (10)
7 Override processing Input Char (1)

8 System Input Char (10)
9 Format type Input Char (10)
0 Error Code I/0 Char (*)

http://iprodeveloper.com/print/rpg-programming/apis-example-physical-file-triggers-... 03-04-2014

APIs by Example: Physical File Triggers and the QDBRTVFD API Page 2 of 5

Default Public Authority: *USE

The third API parameter, Qualified returned file name, is an API output parameter used to
communicate the qualified name of the file for which information is returned. You'll find this
parameter useful if you employ one of the special values *LIBL or *CURLIB to specify the library part
of the fifth API parameter, Qualified file name. Here, you submit the qualified name of the file for
which to retrieve the requested file information. In this case, the actual library name resolved is
returned as part of the third parameter.

The fourth API parameter—Format name—identifies the type of file information to return. The types
of file information available and their associated return format names are as follows:

« File definition template—return format FILD0100

« Format definition template—return format FILD0200
 Key field information template—return format FILDo300
 Trigger information template—return format FILD0400

Each format name identifies an often very complex hierarchy of structures. In each format's header
structure, you'll find offsets to the relevant associated substructures applicable to the requested
format name; these substructures in turn provide offsets to deeper nested substructures. In your
program, you then jump from structure to structure to reach the information you want to access.

This procedure can present a challenge because of the complex and layered structure of the return
formats. For more details about this parameter, please refer to the online API documentation listed
in Find Out More, below. Here, you'll also find links to previous APIs by Example articles discussing
QDBRTVFD, the techniques involved in calling this API, and processing the produced output.

The sixth API parameter, Record format name, applies only to return format FILD0200. In this
parameter, you indicate the name of the record format in the specified file used to generate the file
description. Special value *FIRST, meaning the first record format found, is supported for this
parameter.

Next, the Override processing parameter defines whether the API should honor current file
overrides in effect for the job calling the API. The eighth parameter—System—communicates on
which system the specified file should reside, either the local or a remote system, as indicated by two
of the special values available for this parameter, *LCL and *RMT, respectively. A third value,
*FILETYPE, lets you request information about files on both the local and remote systems,
depending on the file type.

The Format type parameter, used only with format FILD0200, controls whether the logical formats
returned are internal or external. The parameter value *EXT points to external formats, whereas
parameter value *INT points to internal formats. Because you're probably already familiar with the
final API parameter (the standard API error data structure), I'll leave it out of scope for now.

Given the requirement of retrieving the triggers defined for a specified physical file, this article takes
advantage of the FILD0400 API return format. Compared with other return formats, FILD0400 is
quite simple. The header format—Qdb_ Qdbftrg Head—defines not only general trigger information
but also the offset to the Qdb_Qdbftrg_Def Head structure, which is actually an array containing
one entry for each of the triggers defined for the file.

http://iprodeveloper.com/print/rpg-programming/apis-example-physical-file-triggers-... 03-04-2014

APIs by Example: Physical File Triggers and the QDBRTVFD API Page 3 of 5

The following approach provides the foundation for retrieving trigger information:

1. The Qdb_Qdbftrg_Head header structure is based on the space pointer pQdb_ Qdbfirg Head,
which is assigned the address of the API return variable.

2. The Qdb_Qdbftrg_Def Head array structure is based on the space pointer
pQdb_Qdbftrg_Def Head.

3. To get from the Qdb_Qdbfitrg_Head header structure to the first entry of the
Qdb_Qdbftrg_Def Head array structure, you add the offset defined by the
Qdb_Qdbftrg_Head structure's subfield Off _Ent_Numz1 to the pQdb_Qdbftrg_Head pointer
and store the result in the pQdb_Qdbftrg_Def Head pointer.

4. To get to the next array entry, simply add the Qdb_Qdbftrg_Def Head entry length defined
by the structure's Def Len subfield to the pQdb_Qdbftrg_Def Head pointer. Repeat this
procedure only for the number of Qdb_Qdbftrg Def Head entries available, as defined by the
Qdb_Qdbftrg_Head header structure's subfield Num_ Trgs, because it's otherwise
unpredictable what storage the pQdb_ Qdbftrg Def Head pointer references.

Following the Process

To see how this recipe transforms to RPG/IV, check out the code in the CBX246 command
processing program's LodTrgInf subroutine. Running the CBX246 program in the source debugger
lets you follow the process as it unfolds. (For a list of the downloadable code files, see "How to
Compile," below.)

When prompted, the WRKPFTRG command appears as Figure 2 shows.

Figure 2: Work with Physical File Triggers (WRKPFTRG) command prompt

Work with Phys File Triggers (WRKPEFTRG)

Type choices, press Enter.

Physical file Name
Library ce e e e e e e e e *LIBL Name, *LIBL, *CURLIB
Output« * *, *PRINT

http://iprodeveloper.com/print/rpg-programming/apis-example-physical-file-triggers-... 03-04-2014

APIs by Example: Physical File Triggers and the QDBRTVFD API Page 4 of 5

You'll also find help text provided for the command and its parameters. Running WRKPFTRG for file
CUSO001F in library PRODLIB on my system produced the list panel in Figure 3, displaying the two
triggers defined for the mentioned file.

Figure 3: Work with Physical File Triggers list panel

Work with Physical File Triggers

WYNDHAMW
11-02-12
16:41:05
File : CUSO01F Trigger count . . : 2
Library : PRODLIB

Type options, press Enter.

2=Change 3=Copy 4=Remove 5=Display 6=Print 8=Work with

object
Trg
Opt Program Library Nbr State Oper Type Time
Event
CRM0221 PRODLIB 1 *ENABLED *YES *SYS *BEFORE
*INSERT
CRM0221 PRODLIB 2 *ENABLED *YES *SYS *BEFORE
*UPDATE
Bottom
Parameters or command
===>
F3=Exit F5=Refresh F6=Add physical file trigger F8=Work
with file

http://iprodeveloper.com/print/rpg-programming/apis-example-physical-file-triggers-... 03-04-2014

APIs by Example: Physical File Triggers and the QDBRTVFD API Page 5 of 5

Fll=vView 2 Fl12=Cancel F22=Display entire name F24=More
keys

In addition to the trigger information listed in Figure 3, other views offer extra details, including
trigger name and trigger library as well as other operative attributes associated with the trigger, such
as Allow repeated change, Update condition, and more. The list options let you change, copy,
remove, display, and print the selected trigger(s) as well as work with the trigger program object. You
can find further documentation on the list panel, columns, list options, and function keys in the help
text panel group included with the WRKPFTRG command.

Find Out More

« Retrieve Database File Description (QDBRTVFD) API

« "APIs by Example: Analyzing Logical Files Using the QDBRTVFD File APT"
« "APIs by Example: Working with Database Files, Fields and More"

« "APIs by Example: Displaying and Locating a Physical File's Access Paths"

[

« "APIs by Example: Print File Field Description"

How to Compile

Below you'll find instructions on how to create the Work with Physical File Triggers command. This
article includes the following sources:

+ CBX246—RPGLE: Work with Physical File Triggers

« CBX246E—RPGLE: Work with Physical File Triggers - UIM Exit Pgm
« CBX246H—PNLGRP: Work with Physical File Triggers - Help

+ CBX246P—PNLGRP: Work with Physical File Triggers - Panel Group
« CBX246V—RPGLE: Work with Physical File Triggers - VCP

+ CBX246X—CMD: Work with Physical File Triggers

« CBX246M—CLP: Work with Physical File Triggers - Build command

To create all above command objects, compile and run the CBX246M CL program, following the
instructions in the source header. You'll also find compilation instructions in the respective source
headers of the individual sources.

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-physical-file-triggers-
and-qdbrtvfd-api

http://iprodeveloper.com/print/rpg-programming/apis-example-physical-file-triggers-... 03-04-2014

