
print | close

APIs by Example: Directing API Output to Output Files
Using the SQL CLI APIs

System iNetwork Programming Tips Newsletter

Carsten Flensburg

Carsten Flensburg

Thu, 02/25/2010 (All day)

Many IBM CL commands provide an output file option that enables the command to direct its output

to a database file for further processing or collection of data over time. Due to the fact that practically

no APIs offer this option, I once in a while I get requests from readers asking me how to provide for

an output file facility to a specific API. This APIs by Example column demonstrates one of the

methods available to accommodate the API output file requirement, and it involves the use of the

SQL Call Level Interface (CLI) APIs.

The example I present uses the List Network Connection (QtocLstNetCnn) API as the source of

information to be stored in an output file, but essentially any list API could have provided the

foundation. When I wrote the List Network Connection (LSTNETCNN) command, it was therefore

my intention that the code could easily be copied and adapted to serve as the starting point for other

similar list API–based output file utilities.

The native CL commands supporting output files typically use model files located in either the QSYS

or the QUSRSYS system libraries. At the point where the command is ready to produce its output,

and if the target file does not already exist, the model file is simply copied to the location specified,

and the output records are added. To avoid the dependency on model files and to keep the file

creation process within the control of the program producing the output going into the file, I decided

to use the SQL CLI APIs for that purpose.

The SQL CLI APIs enable you, among many other things, to both create and insert records into a

database file using SQL statements executed directly from within your program, and because they're

included with the operating system at no charge, the SQL CLI APIs are readily available on any IBM i

system. While RPG/IV embedded SQL from an SQL perspective provides you with many of the same

options as the SQL CLI APIs, an embedded SQL approach requires the SQL Development Kit,

product 5722ST1 at release 5.4, to be licensed and installed, so using the SQL CLI APIs for the

purpose at hand eliminates those concerns.

The SQL CLI API topic as such has been covered to an impressive extent in a number of articles

written by Scott Klement, the editor of this newsletter, so I've kept that part out of scope of this

article and included links to a list of previously published SQL CLI articles below. I will of course go

through the specific use of the SQL CLI APIs in the code accompanying this article, but for a broader

introduction to this topic, I recommend you look up the mentioned articles. Also note that the

LSTNETCNN CPP takes advantage of the SQLCLI_H copy member created by Scott Klement and

included with the listed articles, so be sure to follow the instructions at the end of this article in order

to download this copy member before attempting the creation of the LSTNETCNN command objects.

The QtocLstNetCnn API offers two almost identical return formats, one for Internet Protocol version

4 (IPv4) connections and another for Internet Protocol version 6 (IPv6) connections. The task of

Page 1 of 10APIs by Example: Directing API Output to Output Files Using the SQL CLI APIs

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-directing-api-output-o...

combining the two formats into a single output file format capable of holding the API output,

irrespective of IP version, is not all that difficult. Here's a list of the information available:

• Remote IP address

• Local IP address

• Remote port

• Local port

• TCP state

• Idle time

• Bytes in

• Bytes out

• Connection open type

• Net connection type

• Line description (IPv6 only)

I add the following fields to complete the output file format:

• IP version (4=IPv4, 6=IPv6)

• TCP state code (LSTN, SYNR, SYNS, EST, FIN1, etc.)

Only a few SQL statements are required to create and label the output file and its fields

appropriately. This is naturally the part of the CPP that will need to be adapted in order to support a

different output file format. Once the SQL CLI environment has been initialized and a connection has

been made to the local database, the following statement will take care of creating a file by the name

and library location specified on input to the program and stored in qualified format in the SQLTable

variable:

 SQLStmt = 'CREATE TABLE ' + SQLTable + ' (' +

 'IPVERS CHAR (1) NOT NULL WITH DEFAULT, ' +

 'RMTADR CHAR (45) NOT NULL WITH DEFAULT, ' +

 'LOCADR CHAR (45) NOT NULL WITH DEFAULT, ' +

 'RMTPRT NUMERIC (5,0) NOT NULL WITH DEFAULT, ' +

 'LOCPRT NUMERIC (5,0) NOT NULL WITH DEFAULT, ' +

 'TCPSTT NUMERIC (2,0) NOT NULL WITH DEFAULT, ' +

 'IDLTIM NUMERIC (10,0) NOT NULL WITH DEFAULT, ' +

 'BYTIN NUMERIC (20,0) NOT NULL WITH DEFAULT, ' +

 'BYTOUT NUMERIC (20,0) NOT NULL WITH DEFAULT, ' +

 'CNNOPT NUMERIC (1,0) NOT NULL WITH DEFAULT, ' +

 'NETCNT CHAR (10) NOT NULL WITH DEFAULT, ' +

 'JOBUSR CHAR (10) NOT NULL WITH DEFAULT, ' +

 'LINDSC CHAR (10) NOT NULL WITH DEFAULT, ' +

 'TCPSTC CHAR (10) NOT NULL WITH DEFAULT' +

 ') RCDFMT NETCNNR';

 rc = SQLExecDirect(stmt: SQLStmt: SQL_NTS);

The SQLExecDirect() API executes the SQL statement stored in the SQLStmt variable immediately.

In order to provide a descriptive text for the newly created file as well as column headings for the

file's fields, the following two SQL statements and their subsequent execution will do the job:

 SQLStmt = 'LABEL ON TABLE ' + SQLTable + ' IS ' +

 'TCP/IP network connections list';

Page 2 of 10APIs by Example: Directing API Output to Output Files Using the SQL CLI APIs

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-directing-api-output-o...

 rc = SQLExecDirect(stmt: SQLStmt: SQL_NTS);

 SQLStmt = 'LABEL ON COLUMN ' + SQLTable + ' ' +

 '(IPVERS IS 'TCP/IP version', ' +

 'RMTADR IS 'Remote address', ' +

 'LOCADR IS 'Local address', ' +

 'RMTPRT IS 'Remote port', ' +

 'LOCPRT IS 'Local port', ' +

 'TCPSTT IS 'TCP state', ' +

 'IDLTIM IS 'Idle time', ' +

 'BYTIN IS 'Bytes in', ' +

 'BYTOUT IS 'Bytes out', ' +

 'CNNOPT IS 'Conn. open type', ' +

 'NETCNT IS 'Net conn. type', ' +

 'JOBUSR IS 'Assoc. user profile', ' +

 'LINDSC IS 'Line description', ' +

 'TCPSTC IS 'TCP state code')';

 rc = SQLExecDirect(stmt: SQLStmt: SQL_NTS);

To also include a text attribute for each field, I execute the statement below:

 SQLStmt = 'LABEL ON COLUMN ' + SQLTable + ' ' +

 '(IPVERS TEXT IS '4=IPv4, 6=IPv6', ' +

 'RMTADR TEXT IS 'Formatted address', ' +

 'LOCADR TEXT IS 'Formatted address', ' +

 'RMTPRT TEXT IS '0-65535', ' +

 'LOCPRT TEXT IS '1-65535', ' +

 'TCPSTT TEXT IS '0-11', ' +

 'IDLTIM TEXT IS 'Milliseconds (ms)', ' +

 'BYTIN TEXT IS 'Byte count', ' +

 'BYTOUT TEXT IS 'Byte count', ' +

 'CNNOPT TEXT IS '0=Pas, 1=Act, 2=n/s', ' +

 'NETCNT TEXT IS '*TCP, *UDP, *IPS', ' +

 'JOBUSR TEXT IS 'Profile name', ' +

 'LINDSC TEXT IS 'Object name', ' +

 'TCPSTC TEXT IS 'State abbrev.')';

 rc = SQLExecDirect(stmt: SQLStmt: SQL_NTS);

None of the three LABEL ON statements are of course mandatory in terms of being able to store the

API output, but spending the little extra effort will make it much easier and comprehensible to work

with the file and its content later. The next step is to prepare the actual insert of the output file

records. The SQL insert statement follows common SQL syntax rules, naming the file name to insert

records into as well as the fields targeted by the operation:

 SQLStmt = 'INSERT INTO ' + SQLTable + ' ' +

 '(IPVERS, RMTADR, LOCADR, RMTPRT, LOCPRT, TCPSTT,' +

 ' IDLTIM, BYTIN, BYTOUT, CNNOPT, NETCNT, JOBUSR,' +

 ' LINDSC, TCPSTC) ' +

 'VALUES(?,?,?,?,?,?,?,?,?,?,?,?,?,?)';

Page 3 of 10APIs by Example: Directing API Output to Output Files Using the SQL CLI APIs

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-directing-api-output-o...

The VALUES keyword, however, specifies only question marks in place of the actual values. The

question marks are called parameter markers in this context. Each parameter marker designates a

value to be specified at statement execution time. How that is done, I'll show you in a moment, for

now I will simply have the SQLPrepare() API process the above statement:

 rc = SQLPrepare(stmt: SQLStmt: SQL_NTS);

The SQLPrepare() API associates the SQL statement specified in the second parameter with the

input statement handle specified as the first parameter. Following the prepare process, other SQL

CLI APIs have access to the prepared SQL statement when the statement handle is specified as input

to these APIs. All that remains now is to tie each parameter marker to the location where the value to

replace the parameter marker at SQL statement execution time is found. To do so I create a data

structure capable of holding all the QtocLstNetCnn API–supplied network connection information

that should go into the output file:

 **-- SQL insert values:

 D SQLValue Ds Qualified

 D IpVers 1a

 D RmtAdr 45a

 D LocAdr 45a

 D RmtPrt 5s 0

 D LocPrt 5s 0

 D TcpStt 5s 0

 D IdlTim 10s 0

 D BytIn 20s 0

 D BytOut 20s 0

 D CnnOpt 1s 0

 D NetCnt 10a

 D JobUsr 10a

 D LinDsc 10a

 D TcpStc 5a

For each parameter marker and in the same order as specified on the SQL INSERT INTO statement

previously prepared, I then call the SQLBindParameter() API, as in the following example, binding

the first parameter marker to the SQLValue.IpVers variable and likewise with the remaining

variables:

 rc = SQLBindParameter(stmt

 : 1

 : SQL_PARAM_INPUT

 : SQL_CHAR

 : SQL_CHAR

 : %Size(SQLValue.IpVers)

 : *Zero

 : %Addr(SQLValue.IpVers)

 : SQL_IGN_INT

 : lenParm1

);

 ...

 rc = SQLBindParameter(stmt

 : 4

Page 4 of 10APIs by Example: Directing API Output to Output Files Using the SQL CLI APIs

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-directing-api-output-o...

 : SQL_PARAM_INPUT

 : SQL_NUMERIC

 : SQL_NUMERIC

 : %Len(SQLValue.RmtPrt)

 : %DecPos(SQLValue.RmtPrt)

 : %Addr(SQLValue.RmtPrt)

 : SQL_IGN_INT

 : *Omit

);

 ...

Here's a brief explanation of each of the SQLBindParameter() API parameters, as they apply to the

context given here:

1. The statement handle identifying the previously prepared SQL statement.

2. Parameter marker number, ordered sequentially left to right, starting at 1.

3. The type of parameter. Primarily relevant for stored procedure calls. The

SQL_PARAM_INPUT constant is used here.

4. The C programming language data type of the parameter. See API documentation for more

information.

5. The SQL data type of the parameter. Same value as specified for parameter 4.

6. The precision or maximum length of the corresponding parameter marker.

7. Scale of the corresponding parameter if packed or zoned (SQL_DECIMAL or

SQL_NUMERIC). Also used to specify timestamp sub-second precision, otherwise ignored.

8. Parameter value pointer. The address of the program variable containing the parameter value

at SQL statement execution time.

9. Not used.

10. The program integer variable containing the length of the character variable specified for

parameter 8. Note that the length is taken at SQL statement execution time, so it is important

that the variable specified for this parameter is an exact match to the API prototype. This to

ensure that the compiler does not assign a temporary variable, which could possibly contain

an unexpected value at execution time.

In this example, I've used zoned numeric variables, but if you, for example, prefer packed decimal,

simply change the relevant SQLValue source variable's data type to p(acked), parameters 4 and 5 to

SQL_DECIMAL, and the SQL CREATE TABLE statement accordingly. Here's an adapted version of

the code demonstrating that:

 **-- SQL insert values:

 D SQLValue Ds Qualified

 D IpVers 1a

 D RmtAdr 45a

 D LocAdr 45a

 D RmtPrt 5p 0 ...

 SQLStmt = 'CREATE TABLE ' + SQLTable + ' (' +

 'IPVERS CHAR (1) NOT NULL WITH DEFAULT, ' +

 'RMTADR CHAR (45) NOT NULL WITH DEFAULT, ' +

 'LOCADR CHAR (45) NOT NULL WITH DEFAULT, ' +

 'RMTPRT DECIMAL (5,0) NOT NULL WITH DEFAULT, ' ...

 rc = SQLBindParameter(stmt

Page 5 of 10APIs by Example: Directing API Output to Output Files Using the SQL CLI APIs

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-directing-api-output-o...

 : 4

 : SQL_PARAM_INPUT

 : SQL_DECIMAL

 : SQL_DECIMAL

 : %Len(SQLValue.RmtPrt)

 : %DecPos(SQLValue.RmtPrt)

 : %Addr(SQLValue.RmtPrt)

 : SQL_IGN_INT

 : *Omit

);

 ...

Note that in the SQL CLI API code examples accompanying the SQL CLI articles previously referred

to, the SQLBindParam() API is usually employed to establish the correlation between SQL statement

parameter marker and corresponding program variables. The SQLBindParameter() API is a later and

enhanced version of the original SQLBindParam() API. Both APIs are still supported by IBM, but the

former is now recommended by IBM to be used in new code, as support of the latter might be

withdrawn at some point in the future.

At this point everything is ready for the network connection information to be inserted into the

output file. So I call the QtocLstNetCnn API and process all the data returned by the API to the user

space specified on the API call. This follows the normal conventions applying to processing output

from list APIs, which return information by means of user spaces. If you're interested in more details

on this subject, I've included a link below to an article offering a thorough explanation. Finally, for

each API list record extracted from the user space, I load the information from the API output

structure to the corresponding fields in the SQLValue data structure, and then I run the SQLExecute

() API to execute the SQL INTO statement prepared earlier:

 If PxIpVers = '4';

 SQLValue.IpVers = '4';

 SQLValue.RmtAdr = NCNN0100.RmtAdr;

 SQLValue.LocAdr = NCNN0100.LocAdr;

 SQLValue.RmtPrt = NCNN0100.RmtPort;

 ...

 SQLValue.JobUsr = NCNN0100.AscUsrPrf;

 SQLValue.LinDsc = *Blanks;

 SQLValue.TcpStc = GetTcpStt(NCNN0100.TcpState);

 Else;

 SQLValue.IpVers = '6';

 SQLValue.RmtAdr = NCNN0200.RmtAdr;

 SQLValue.LocAdr = NCNN0200.LocAdr;

 SQLValue.RmtPrt = NCNN0200.RmtPort;

 ...

 SQLValue.JobUsr = NCNN0200.AscUsrPrf;

 SQLValue.LinDsc = NCNN0200.LinDsc;

 SQLValue.TcpStc = GetTcpStt(NCNN0200.TcpState);

 EndIf;

 rc = SQLExecute(stmt);

This will insert one record into the output file, and I'll then simply repeat the above process until all

API output records have been inserted. As you will see if you take a closer look at the LSTNETCNN

Page 6 of 10APIs by Example: Directing API Output to Output Files Using the SQL CLI APIs

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-directing-api-output-o...

CPP, there are some SQL CLI environment initialization and cleanup steps involved also, but in

order to reuse the code presented here for other list APIs, the steps discussed above are the ones you

will need to adapt in order to make output file part work. As for the SQL CLI approach in its entirety,

you'll find all the details explained in the articles located at the links below, as for example "Retrieve

an SQL Result Set with RPG."

Now back to the LSTNETCNN command. I've included the command prompt displaying all the

command's parameters below, although normally only the appropriate (IPv4 or IPv6) address range

parameters are displayed, depending on the input in the IP version parameter:

 List Network Connections (LSTNETCNN)

 Type choices, press Enter.

 Output file Name

 Library *LIBL Name, *LIBL,

*CURLIB

 Replace or add records *ADD *REPLACE, *ADD

 IP version *IPV4 *IPV4, *IPV6

 Local IPv4 address range:

 Lower value *

 Upper value *ONLY

 Local IPv6 address range:

 Lower value *

 Upper value *ONLY

 Local port range:

 Lower value * 1-65535, *

 Upper value *ONLY 1-65535, *ONLY

 Remote IPv4 address range:

 Lower value *

Page 7 of 10APIs by Example: Directing API Output to Output Files Using the SQL CLI APIs

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-directing-api-output-o...

 Upper value *ONLY

 Remote IPv6 address range:

 Lower value *

 Upper value *ONLY

 Remote port range:

 Lower value * 1-65535, *

 Upper value *ONLY 1-65535, *ONLY

You'll note that in contrast to the IBM command output file convention, there's no option of

specifying a file member. IBM commands create output files with a MAXMBRS(*NOMAX) attribute

and allow you to specify a member name, in turn providing an option to add more members to the

same output file. Since SQL has no notion of file members and files created by the SQL CREATE

TABLE statement consequently allow only one member, the SQL CLI API approach chosen for the

LSTNETCNN command effectively eliminates multi-member support for this command.

Any attempt to change an SQL table's MAXMBRS attribute to a value exceeding 1 is honored with the

diagnostic message CPD3213 Maximum-member value not valid for file &1 followed by escape

message CPF7304.

The command and its parameters are documented in full detail in the online help text panel group,

but here are some additional comments: You specify the library qualified name of the output file. If it

does not exist, it will be created using the SQL CLI API calls described above. If the file already exists,

you have the option of specifying whether the generated output should be added to the records

already found in the output file, if any, or whether the current record content should be replaced. In

the latter case, the output file is cleared prior to running the list request, irrespective of records being

found or not.

The QtocLstNetCnn API supports a connection list qualifier parameter for each of the two Internet

Protocol versions. The selection parameters included in the API list qualifier data structure are

exposed by the LSTNETCNN command's IP address and port range selection parameters. You have

the option of limiting the network connection list output to a specified local or remote IP address

range and/or a local or remote port range.

The LSTNETCNN command uses the inet_pton() Sockets Network API to validate any IP addresses

specified for the IPv4 or IPv6 address ranges. The primary purpose of this API is to convert an IPv4

or IPv6 address in its standard text presentation form into its numeric binary form, a capacity also

employed by the LSTNETCNN command in setting up the API list qualifier parameter, which

depends on the binary IP address format. But the inet_pton() API is also useful in terms of IP

address validation as its return value indicates any of the three following possible outcomes of the

conversion operation:

Page 8 of 10APIs by Example: Directing API Output to Output Files Using the SQL CLI APIs

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-directing-api-output-o...

 1 = Conversion operation was successful

 0 = Conversion operation was not successful: Input format is not a

valid IPv4

 or IPv6 address string

 -1 = Conversion operation was not successful: Call error detected by

API

A return value of -1 indicates the API call itself ended in error, while a return value of zero signals

that the format of the specified IP address was not valid. So once you get the API call working, you'll

either get a zero or a 1 back from the API, depending on whether the specified IP address is valid. The

LSTNETCNN command also verifies the record format level identifier of a specified existing output

file to ensure that no attempts are made to direct output to a file with an invalid record format.

This verification is based on the List Record Format (QUSLRCD) API and the valid record format

identifier stored in the CPP. The latter is obtained using the Display File Description (DSPFD)

command following the first successful execution of the LSTNETCNN command and subsequently

entered into the CPP's FMT_LVLID global constant, upon which the program is recompiled. The

valid format level identifier for the LSTNETCNN command specifies the following value:

 D FMT_LVLID c '30E055F0F9848'

In case you change the LSTNETCNN output file format or use the CPP as a starting point for you own

list commands, you'll consequently need to update the FMT_LVLID constant to reflect the change

accordingly. Also please consider that I've added code to take care of possible messages being sent

from the SQL CLI APIs to your job's job log. Especially if you run the command in debug mode, you'll

see a lot of SQL CLI messages being sent to the job log. This is in accordance with the way the SQL

runtime in general behaves when detecting debug mode being active. If you decide to preserve this

behavior, you'll want to eliminate the RmvLogLst() function call in the CPP.

This APIs by Example includes the following sources:

CBX212 -- RPGLE -- List Network Connections - CPP

CBX212H -- PNLGRP -- List Network Connections - Help

CBX212V -- RPGLE -- List Network Connections - VCP

CBX212X -- CMD -- List Network Connections

CBX212M -- CLP -- List Network Connections - Build command

To create all these List Network Connection command objects, compile and run the CBX212M

program, following the instructions in the source header. As always, the compilation instructions are

also included in the respective source headers.

For the LSTNETCNN command processing program CBX212 to compile, you'll need to download

and copy the SQLCLI_H member mentioned earlier to a QRPGLESRC source file in your job's

library list. At the very end of this article, I've provided a link to a zip file containing the correct

version of the SQLCLI_H copy member. In addition to the SQLCLI_H member, I've also in my code

included and adapted the generic SQL CLI API Check_error() function introduced by Scott Klement

in his SQL CLI API article series. Many thanks to Scott!

SQL CLI API related articles:

Read and Write LOBs from an RPG Pointer Field

Page 9 of 10APIs by Example: Directing API Output to Output Files Using the SQL CLI APIs

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-directing-api-output-o...

Retrieve an SQL Result Set from a Stored Procedure with Parameters

Fetch Multiple Records with SQL CLI

Websites with SQL CLI Information

Retrieve an SQL Result Set with RPG

Database Access from CL with SQL CLI

Efficient Character Processing with CLI

IBM SQL CLI Documentation:

DB2 UDB CLI functions - 5.4

Call Level Interface (CLI) APIs - 5.4

SQL call level interface - 5.4

Data types and data conversion in DB2 for i5/OS CLI functions

Determining equivalent SQL and ILE RPG data types

Differences between DB2 UDB CLI and embedded SQL

SQL CLI Frequently Asked Questions

SQL CLI What's new for V6R1

Technical document: OS/400 and i5/OS SQL CLI (ODBC) Documentation and FAQs

DB2 for i Tips & Technical Papers - SQL CLI

Technical reference: CLI Programs in RPG

User Space List API article:

APIs by Example: Retrieve Subsystem Entries API

This article demonstrates the following TCP/IP Management & Socket Network APIs:

The List Network Connections (QtocLstNetCnn) API

Convert IPv4 and IPv6 Addresses Between Text and Binary Form Function

Retrieve the source code for this API example.

The prerequisite SQLCLI_H copy member is available as part 56657_600_CliClob.zip.

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-directing-api-output-

output-files-using-sql-cli-apis

Page 10 of 10APIs by Example: Directing API Output to Output Files Using the SQL CLI APIs

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-directing-api-output-o...

