4/6/2014 APIs by Example: Zip and Unzip Files with the New 7.1 Zip API Support

B print | close

APIs by Example: Zip and Unzip Files with the New 7.1 Zip APl Support

SystemiNetwork Progranming Tips Newsletter
Carsten Flensburg

Carsten Flensburg
Thu, 12/08/2011 - 2:00am

In a recent IBM announcement, IBM revealed that zip and unzip file support had been developed and PTF'd for
release 7.1. This support comes in the form of two ILE APIs, QzipZip and QzipUnzip, respectively. At the end of
this article, I've included information about the 7.1 PTFs delivering the zip support APIs. One PTF installs the
QZIPUTIL service program containing the aforementioned APIs, and another PTF copies the associated header
files tothe QSYSINC library. The zip support was part of a major refresh of IBMi 7.1, and Isuggest you follow the
above link to familiarize y ourself with all the details, which might include other enhancements of interest.

After a quick study of the zip APIs'documentation and header files, [knew that it would be quite useful to create
a couple of CLcommand interfaces to make the zip and unzip services immediately available, wherever and
whenever the common requirement of zipping or unzipping a file or directory on IBM i was encountered. I
therefore decided to write the Zip File (ZIPF) and Unzip File (UNZIPF) CL commands. The CPPs also offer RPG/IV
examples of how to code the two corresponding APIs, should you want tointegrate zip or unzip functionality
directly in your programs. Today's APIs by Example brings you the details.

The IBM announcement says that the QzipZip and QzipUnzip APIs are available with the most recent IBM HTTP
SERVER FORI group PTF, which at the time of writing amountstolevel 10. However, it quickly became
apparent that thisisnot the case. Iexpect the APIs will be included in the next update of the HTTP group PTF,
although Idonot know that for sure, sowe'll have towait and see. Doing a search on IBM's APAR and PTF
database, however, allowed me toidentify the two PTFsincluding the APIs as well as the associated QSYSINC
library header files, respectively, and as mentioned you'll find links to the PTF cover letters below.

Although the QzipZip and QzipUnzip APIs were just recently released, the IBMi 7.1 Information Center's API
section already includes the APIdocumentation for these APIs. Surprisingly however, the online QzipZip and
QzipUnzip APIdocumentation specifies only the APIs parameter listsin C notation, as the following excerpt from
the APImanual's UNIX-Ty pe APIsection shows:

Compress Files and Directories (QzipZip) API
#include

void QzipZip(
Qlg_Path Name T * fileToCompress,
Qlg_Path Name T * compressedFileName,
char * formatName,
char * zipOptions,
char * errorStruct)”

Decompress an archive file (QzipUnzip) API

#include

void QzipUnzip (
Qlg Path Name T * compressedFileName,
Qlg_Path Name T * dirToPlaceDecompFiles,
char * formatName,
char * unzipOptions,
char * errorStruct)

Asit turned out, the new QZIPUTIL RPG/IV header file in library QSYSINC actually alsoincludes the RPG/IV
prototy pes for the two APIs, so the missing parameter list definition is not critical for any one unfamiliar with C.
Should you at some point be challenged with deciphering a C prototy pe for which IBM did not do the job for you,
you will, however, find plenty of help in the document Converting from C prototypes to RPG prototypes, written

http://iprodevel oper.com/print/rpg- prog ramming/apis-example-zip-and-unzip-files-new- 71-zip-api-support 1/6

4/6/2014 APIs by Example: Zip and Unzip Files with the New 7.1 Zip API Support
by Barbara Morris of IBM and published on Scott Klement's website. A link tothe document is included below.

Anyway, if you're more comfortable with IBM's usual API parameter list notation, here's my take on how the
corresponding Zip and Unzip APIdocumentation would look in the IBM Information Center APl manual, given
the above C prototy pes:

Compress Files and Directories (QzipZip) API

Required Parameter Group:

1 File to zip Input Char (*)
2 Zip file name Input Char (*)
3 Zip Options format name Input Char (8)
4 Zip options Input Char (*)
5 Error code I/0 Char (*)

Decompress an archive file (QzipUnzip) API

Required Parameter Group:

1 Zip file name Input Char (*)
2 Unzip to directory Input Char (*)
3 Unzip options format name Input Char (8)
4 Unzip options Input Char (*)
5 Error code I/0 Char (*)

In the following paragraphs, Ibriefly walk you through the parameters for both APIs, which are relatively few
in number and pretty straightforward. Both APIs' first and second parameter is a Qlg_Path_Name_t structure,
the first one pointing to the object to be processed, and the second one pointing to where the outcome of the
process should be placed. In addition to allowing you to specify a path name, the Qlg_Path_Name_t structure
also provides for a set of parameters defining all relevant information about how the receiving API should
interpret the path name string in order to arrive at the correct path name:

Qlg Path Name t structure

Offset
Dec Hex Type RPG/IV Field
0 0 BINARY (4) 101 0 CCSID
4 4 CHAR (2) 2a Country or region ID
6 6 CHAR (3) 3a Language ID
9 9 CHAR (3) 3a Reserved
12 C BINARY (4) 10i 0 Path type indicator
16 10 BINARY (4) 10i 0O Length of path name
20 14 CHAR (2) 2a Path name delimiter character
22 16 CHAR (10) 10a Reserved
32 26 CHAR (*) 5000a Path name (or pointer to path name)

You must specify a Coded Character Set Identifier (CCSID), a country or region ID, a language ID, as well as the
path type being either a character string or a pointer toa character string, the length of path name, and the
path name delimiter character. All this information is used by the APIin question to ensure that the specified
path name is addressed correctly. Luckily, most of the parametersin the Qlg_Path_Name_t structure take a
default value pointing tothe corresponding job attribute currently in effect. As for the path name delimiter
character, note that the Zip APIs accept only a forward slash (/).

The following data structure definition shows how the above Qlg_Path_Name_t specification is translated into
RPG/IV. The aforementioned default values are specified for all the parameters supporting this feature:

**-— Global constants:

D CUR CCSID c 0

D CUR_CTRID c x'0000"

D CUR_LNGID c x'000000"

D CHR DLM1 c 0

**-- Qlg Path Name t API path:

D Qlg_Path Name t...

D Ds Qualified Align
D CcsId 101 0 Inz(CUR _CCSID)
D CtrId 2a Inz(CUR_CTRID)

http://iprodevel oper.com/print/rpg- prog ramming/apis-example-zip-and-unzip-files-new- 71-zip-api-support

4/6/2014 APIs by Example: Zip and Unzip Files with the New 7.1 Zip API Support

D LngId 3a Inz (CUR_LNGID)
D 3a Inz (*A11x'00")
D PthTypI 10i 0 Inz(CHR DLM1)
D PthNamLen 101 0

D PthNamDlm 2a Inz('/ ')

D 10a Inz(*Allx'00"')
D PthNam 1024a

D pPthNam * Overlay(PthNam)

In a previous article, I discussed the Qlg_Path_Name_t structure in more detail, and Iinclude a link to this
article below. As for the Zip and Unzip APIs' parameter lists in particular, the zip operation expects you to
employ the Qlg_Path_Name_t structure to specify a path tothe file or directory that you want tozip as the first
parameter, and the name of the zip file archive to store the zipped object(s) in as the second parameter.
Likewise, for the unzip operation, you specify the zip file name tounzip as the first parameter, and the directory
in which you want the unzipped object(s) to be placed as the second parameter.

Both APIs also support a number of options to apply for the zip operation being performed. These options are
passed in another structure, whose format name must be specified as APl parameter number three, and the
actual option structure as parameter four. The Zip API option format ZIP00o100 has the following definition:

Zip options structure ZIP00100

Offset Type RPG/IV Field
Dec Hex
0 0 CHAR (10) 10a Verbose option
10 A CHAR (6) 6a Subtree option
16 10 CHAR (512) 512a Comment
528 210 BINARY (4) 10u 0 Length of the comment
UNSIGNED

The Verbose option specifies whether verbose messages are tobe printed tothe standard out during the
compression process. The sy stem itself does not set up stdin, stdout, stderr descriptors, and it is the responsibility
of the user of this APIto set the descriptors when using this option.

The Subtree option specifies whether directory subtrees are included or not when creating an archive file. And
the Comment option allows you to add a comment in the job CCSID to the newly created archive file. The
corresponding unzip options structure UNZIP100 should be defined as follows:

Unzip options structure UNZIP100

Offset Type RPG/IV Field

Dec Hex
0 0 CHAR (10) 10a Verbose option
10 A CHAR (6) 6a Replace option

The Replace option specifies whether an existing file needs toreplaced or not if a file by the same name already
existsin the target path. This option applies only to file objects; directory names are ignored. The verbose option
is also supported for the unzip operation. As noted above, the verbose option relies on a programming effort
provided by the caller of the APL I've included a link below to an article written by Scott Klement discussing the
setup involved in accessing the stdin, stdout, and stderr data streams, albeit in a slightly different scenario, in
case you'd like to investigate this option further.

Regarding the option structure format names themselves, it's worth noting that the regular APIstandard
pattern of four letters followed by four digits is not being observed. Why thisis the case Idon't know, but I did
wonder why IBM has not enforced the common APIstandard, especially due tothe ambiguity in the ZIPoo100
format name—is the fourth byte an 'O'or a '0'?

The fifth and final API parameter is, however, the good old standard APIerror structure, which has been
discussed many times earlier, soIdon't gointo more detail on this topic here. I've included IBM's prototy pes
defining the Zip APIinterfaces below. Following installation of the PTFs referenced at the end of this article, you
should find the RPG/IV prototy pes as well as parameter structure definitions in the QZIPUTIL header file in
QRPGLESRC in the sy stem include library QSYSINC. The prototy pes are included below:

http://iprodevel oper.com/print/rpg- prog ramming/apis-example-zip-and-unzip-files-new- 71-zip-api-support

3/6

4/6/2014 APIs by Example: Zip and Unzip Files with the New 7.1 Zip API Support

D QzipZip PR EXTPROC (*CWIDEN: 'QzipZip")
D filesToZip LIKEDS (Qlg_Path Name T) CONST
D zipFileName LIKEDS (Qlg_Path Name T) CONST
D formatName 8A CONST
D zipOptions LIKEDS (Qzip Zip Options_ T)
D CONST
D errorStruct 1000A OPTIONS (*VARSIZE)
D QzipUnzip PR EXTPROC (*CWIDEN: 'QzipUnzip")
D zipFileName LIKEDS (Qlg Path Name T) CONST
D unzipTargetPath...
D LIKEDS (Qlg_Path Name T) CONST
D formatName 8A CONST
D unzipOptions LIKEDS (Qzip Unzip Options T)
D CONST
D errorStruct 1000A OPTIONS (*VARSIZE)

The Zip APIs are implemented by means of the QZIPUTIL service program located in library QSYS. The service
program is written in ILE C++, hence IBM is following the convention of specifying either *CWIDEN or
*CNOWIDEN in the prototy pe definition. In this case irrespective of noreturn value or parameters passed by
value being present, which are normally considered the indicators for this practice.

Another issue totake into consideration is the fact that among the Zip APIs, error return messages are a number
of messages supporting *CCHAR message data (a character string that can be converted). If data of this type is
sent toa message queue that hasa CCSID tag other than 65535 or 65534, the data is converted from the CCSID
specified by the send function tothe CCSID of the message queue.

To extend the *CCHAR convertible character support tothe APIerror message handling in the two CPPs calling
the Zip APIs, Iemploy the APIerror return message data structure format ERRCo200. For more information on
thistechnique, please check out the article "APIs by Example: Using the ERRCo200 Data Structure," by
following the link below.

Anyway, as for the two Zip File CLcommands constructed on the basis of the corresponding Zip APIs, let's take a
look at the Zip File (ZIPF) command prompt, in essence simply exposing the parameters supported by the
QzipZip APL
Zip File (ZIPF)
Type choices, press Enter.

File to compress .

Compressed file name .

Verbose option *NONE *NONE, *VERBOSE
Directory subtree *ALL *ALL, *NONE
Comment *BLANK

You specify the file or directory tozip, as well as the zip file to create. Wildcard characters and pattern matching
of the path name are not supported. The path can be an absolute path or a relative path name. All relative path
names are relative tothe current directory at the time when the ZIPF command is run. In addition to specifying
whether a directory subtree should be included in the zip operation, you also have the option of associating a
comment with the zip file being created as a result of the ZIPF command being run.

The complementary Unzip File (UNZIPF) command has the following prompt, which likewise exposes the
parameters supported by the QzipUnzip API:

Unzip File (UNZIPF)
Type choices, press Enter.
Compressed file name .

Directory to place files .

http://iprodevel oper.com/print/rpg- prog ramming/apis-example-zip-and-unzip-files-new- 71-zip-api-support 4/6

4/6/2014 APIs by Example: Zip and Unzip Files with the New 7.1 Zip API Support

Verbose option *NONE *NONE, *VERBOSE
Replace *NO *YES, *NO

I've included the verbose option for both commands for completeness. Yet in order to actually employ this
option, programming skills and efforts are involved, as mentioned earlier. For full documentation of the ZIPF
and UNZIPF commands, please refer toboth commands' online help text panel group. Note that the full path of
the zipped object is placed in the specified directory when the object is decompressed and restored.

Alsonote that the CCSID of a zipped object is not preserved upon decompression, but rather reflects the job CCSID
being in effect when the zip file is unzipped. This restriction needs to be considered in order to ensure that a
decom pressed text file's CCSID still reflects the file's actual content correctly. The Zip and Unzip APIs use the
open-source zlib library toinflate and decompress the specified files, respectively. Tolearn more about the open-
source zlib library. please follow the link at the end of this article pointing you to the zlib library home page.

This APIs by Example includes the following sources:

CBX240 -- RPGLE -- Zip File - CPP

CBX240H -- PNLGRP -- Zip File - Help

CBX240V -- RPGLE -- Zip File - VCP

CBX240X -- CMD -- Zip File

CBX241 -- RPGLE -- Unzip File - CPP

CBX241H -- PNLGRP -- Unzip File - Help

CBX241V -- RPGLE -- Unzip File - VCP

CBX241X -- CMD -- Unzip File

CBX240M -- CLP -- Zip/Unzip File - Build Commands

To create all these command objects, compile and run the CBX240M CL program, following the instructions in
the source header. You'll also find compilation instructions in the respective source headers.

PTFs Delivering 7.1 ZIP and UNZIP support:

57708S1-S144777 -Zip and Unzip APTon V7R1

5770SS1-SI44998 - Header files for QZIPUTIL service program

Related articles and documentation:

IBMi7.1 Enhancements Optimize ISV Support Announcement

zlib Librarvy Home Page

Barbara Morris, IBM: Converting from C prototy pes to RPG prototy pes

APIs by Example: Conversion of a Path Name

APIs by Example: Using the ERRCo200 Data Structure

Suppress PASE Output Messages (stdin, stdout, stderr)

Communicating Through a Pipe

Communicating Through a Pipe — Part 2

Don't Submit, Spawn!

This article demonstrates the following UNIX-type APIs:

Compress Files and Directories (QzipZip) API

Decompress an archive file (QzipUnzip) API

API Path name format

http://iprodevel oper.com/print/rpg- prog ramming/apis-example-zip-and-unzip-files-new- 71-zip-api-support 5/6

4/6/2014 APIs by Example: Zip and Unzip Files with the New 7.1 Zip API Support

Error code parameter format

Retrieve the source code for this API example.

Source URL: http://iprodev eloper.com /rpg-programming/apis-example-zip-and-unzip-files-new-7 1 -zip-api-
support

http://iprodevel oper.com/print/rpg- prog ramming/apis-example-zip-and-unzip-files-new- 71-zip-api-support 6/6

