
print | close

APIs by Example: A Validation List Entry's Life Cycle in CL
Commands

System iNetwork Programming Tips Newsletter

Carsten Flensburg

Carsten Flensburg

Thu, 06/25/2009 (All day)

This week, I continue the coverage of validation lists and validation list entries, which I began in the

June 11 issue of this newsletter. In that article, I discussed the basics of validation lists and the

anatomy of validation list entries, and I also provided new validation list commands. I recommend

reading the article, if you haven't already. A link is provided at the end of this article.

As I've demonstrated in my earlier contributions to this column, you'll often build the validation list

APIs and functions directly into your applications. You can also find links to these articles at the end

of this article. However, while developing and testing these applications, you'll often need to create,

change, verify, and remove validation list entries to make sure that everything works the way you've

designed and planned. This is where the Add Validation List Entry (ADDVLDLE), Verify Validation

List Entry (VFYVLDLE), Change Validation List Entry (CHGVLDLE), and Remove Validation List

Entry (RMVVLDLE) commands I present today can offer some assistance.

Each validation list entry command also constitutes an interface to, and example of, the equivalent

validation list entry API and can be employed as a starting point for your own use of these APIs. I

think it is fair to say that the validation list API documentation, and the data structures defined for

the API input and output parameters, at times can be quite challenging. Hopefully, these examples

will provide a shortcut, should you need to code these APIs yourself. Only the data structure

enhancements added to RPG IV in recent releases have made it possible to define the data structures

exactly as they were designed by IBM's API programmers.

To show you an example of this complexity and how it matches the RPG IV data structure facilities,

I've included a walkthrough of one of the validation list entry API data structures from a previous

article. Let's look at the Add Validation List Entry API parameter data structure that specifies the

entry's attribute data, Qsy_Attr_Info_T. Currently, this data structure primarily supports the ability

to define whether a validation list entry's encrypted data is allowed to be stored in a decryptable

form, a concept I explained last time.

By default, if you don't submit this data structure on the API call, this attribute is set to zero, which

will prevent you from retrieving the encrypted data from the validation list. You're faced with the

challenge of defining this data structure correctly and initializing this attribute to '1' in order to make

the encrypted data retrievable. The data structure in question is defined by three subfields:

 **-- Validation list attribute data:

A-> D Qsy_Attr_Info_T...

 D Ds Qualified

 D Number_Attrs 10i 0 Inz(1)

 D Res_align 12a

Page 1 of 7APIs by Example: A Validation List Entry's Life Cycle in CL Commands

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-validation-list-entrys-l...

B-> D Attr_Descr LikeDs(Qsy_Attr_Descr_T)

C-> D Inz(*LikeDs)

The third subfield, Attr_Descr, is defined by the LikeDs keyword to have the same format as the

template data structure called Qsy_Attr_Descr_T (B). The many subfield initializations in the

template data structure are propagated to the Attr_Descr parameter with the Inz(*LikeDs) keyword

(C). The following code snippet shows these initializations:

 D Qsy_Attr_Descr_T...

 D Ds Qualified

 D Attr_Location 10i 0 Inz(QSY_IN_VLDL)

 D Attr_Type 10i 0 Inz(QSY_SYSTEM_ATTR)

 D Attr_Res 8a Inz(*Allx'00')

F-> D Attr_ID_p *

 D Attr_Other_Descr...

 D 32a Inz(*Allx'00')

 D Attr_Data_Info...

 D 96a

D-> D Attr_VLDL LikeDs(Qsy_In_VLDL_T)

 D Overlay(Attr_Data_Info: 1)

E-> D Inz(*LikeDs)

 D Attr_In_Other...

 D 96a Overlay(Attr_Data_Info:1)

 D 64a Overlay(Attr_In_Other:33)

 D Inz(*Allx'00')

 D Attr_Other_Data...

 D 32a Inz(*Allx'00')

The Qsy_Attr_Descr_T data structure again contains an embedded data structure, Attr_VLDL. This

data structure is in turn defined by the template data structure Qsy_In_VLDL_T (D). The

Attr_VLDL data structure is initialized with the values from the template data structure using the Inz

(*LikeDs) keyword (E). The following code is where those initializations take place:

 D Qsy_In_VLDL_T Ds Qualified

 D Attr_CCSID 10i 0 Inz(-1)

G-> D Attr_Len 10i 0 Inz(1)

 D Attr_Res_1 8a Inz(*Allx'00')

H-> D Attr_Value_p *

 **-- Qsy_Attr_Descr_T structure constants:

 D QSY_IN_VLDL c 0

 D QSY_SYSTEM_ATTR...

 D c 0

 **-- Qsy_In_VLDL_T structure parameter:

 D Qsy_Vfy_Find s 1a Inz('1')

 Reset Qsy_Entry_ID_Info_T;

In the code, the complex data structures' subfields are referred to by specifying their qualified name:

A-> Qsy_Attr_Info_T

B-> | Attr_Descr

Page 2 of 7APIs by Example: A Validation List Entry's Life Cycle in CL Commands

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-validation-list-entrys-l...

F-> | | Attr_ID_p

 | | |

 Qsy_Attr_Info_T.Attr_Descr.Attr_ID_p = %Alloc(15);

A-> Qsy_Attr_Info_T

B-> | Attr_Descr

F-> | | Attr_ID_p

 | | |

 %Str(Qsy_Attr_Info_T.Attr_Descr.Attr_ID_p: 15)

 = 'QsyEncryptData';

A-> Qsy_Attr_Info_T

B-> | Attr_Descr

D-> | | Attr_VLDL

G-> | | | Attr_Len

 | | | |

 Qsy_Attr_Info_T.Attr_Descr.Attr_VLDL.Attr_Len

 = %Size(Qsy_Vfy_Find);

A-> Qsy_Attr_Info_T

B-> | Attr_Descr

D-> | | Attr_VLDL

H-> | | | Attr_Value_p

 | | | |

 Qsy_Attr_Info_T.Attr_Descr.Attr_VLDL.Attr_Value_p

 = %Addr(Qsy_Vfy_Find);

As you can imagine, it can easily take an hour or two to deduce and program such a data structure.

It's often after much trial and error that I get such complex data structures working. At first, I often

have only a vague idea of how the pieces fit together. Therefore, whenever time permits, I use the

source debugger to step through the code and verify each element and subfield of the data structures.

Using the display variable function against the name of the main data structure causes the source

debugger to map out all segments and qualifications of the data structure and its subfields. This is

also a great help in the trial-and-error process.

For now, let's turn our attention to the four CL commands being discussed today, the first one being

the Add Validation List Entry (ADDVLDLE) command. Here's the ADDVLDLE command prompt:

 Add Validation List Entry (ADDVLDLE)

 Type choices, press Enter.

 Validation list Name

 Library *LIBL Name, *LIBL,

*CURLIB

 Entry ID:

Page 3 of 7APIs by Example: A Validation List Entry's Life Cycle in CL Commands

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-validation-list-entrys-l...

 Entry ID

 Coded character set identifier *DFT 1-65534, *DFT, *HEX

 Encryption data:

 Encryption data

 Coded character set identifier *DFT 1-65534, *DFT, *HEX

 Entry data:

 Entry data

 Coded character set identifier *DFT 1-65534, *DFT, *HEX

 Encryption data option *VFYONLY *VFYONLY, *VFYFIND

 Entry ID hexadecimal

 Encrypted data hexadecimal . . .

 Entry data hexadecimal

The command and all its parameters are documented in detail in the accompanying help text panel

group and also match the validation list entry parts explained earlier. Entry ID defines the value that

identifies the individual validation list entry. Encryption data is where you'd store a password or

other confidential data to be either verified or retrieved at a later point. Entry data provides an

opportunity to include and store other related information with the validation list entry.

For all three parameters, you also specify the coded character set identifier (CCSID) for each value.

Depending on the value specified, the command will convert the value accordingly before storing it in

the validation list entry.

Note that both the encryption data and entry data parts are optional. It is possible to create a

validation list entry without either of the two. You do so by specifying *NONE for either of them

when creating the validation list entry. Please see the help text for all details. The Encryption data

option is where you specify whether the encryption data is stored in a one-way or two-way

encryption format, as explained earlier. Note that by default, the stored encryption data is only

verifiable, not retrievable.

Because these commands are intended to be used in development and testing scenarios, I've also

included an option to specify the command's three main parameters in hexadecimal format. To

ensure that no CCSID conversion issues are at play, these parameters allow you to specify the entry

ID, encryption data, and entry data in hexadecimal notation, i.e. hex nibble values 0-9 and A-F. The

help text explains this option in more detail. The CHGVLDLE and RMVVLDLE commands both

present a subset of the above interface. Further documentation is in the help text panel groups.

Page 4 of 7APIs by Example: A Validation List Entry's Life Cycle in CL Commands

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-validation-list-entrys-l...

The Verify Validation List Entry (VFYVLDLE) command also displays some of the above parameters,

as you'll see below:

 Verify Validation List Entry (VFYVLDLE)

 Type choices, press Enter.

 Validation list Name

 Library *LIBL Name, *LIBL,

*CURLIB

 Entry ID:

 Entry ID

 Coded character set identifier *DFT 1-65534, *DFT, *HEX

 Encryption data:

 Encryption data

 Coded character set identifier *DFT 1-65534, *DFT, *HEX

 Entry ID hexadecimal

 Encrypted data hexadecimal . . .

The main difference is that the outcome of the validation list entry, in case of the verification process

leading to a failure, is communicated in the form of the exception message CBX0201 being returned

to the command caller. If run from a command line, this has no further implications. However, if

you're running the command in a program, you'll want to monitor for the CBX0201 message in order

to catch the event of verification failure. So far I've offered the CVTVLDL, DSPVLDLE, ADDVLDLE,

VFYVLDLE, CHGVLDLE, and RMVVLDLE CL commands. Next time, I'll complete the collection of

validation list commands, so if this has caught your interest so far, remember to check out the next

APIs by Example.

This APIs by Example includes the following sources:

CBX2051 -- RPGLE -- Add Validation List Entry - CPP

CBX2051V -- RPGLE -- Add Validation List Entry - VCP

CBX2051H -- PNLGRP -- Add Validation List Entry - Help

CBX2051X -- CMD -- Add Validation List Entry

Page 5 of 7APIs by Example: A Validation List Entry's Life Cycle in CL Commands

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-validation-list-entrys-l...

CBX2052 -- RPGLE -- Verify Validation List Entry - CPP

CBX2052V -- RPGLE -- Verify Validation List Entry - VCP

CBX2052H -- PNLGRP -- Verify Validation List Entry - Help

CBX2052X -- CMD -- Verify Validation List Entry

CBX2053 -- RPGLE -- Change Validation List Entry - CPP

CBX2053V -- RPGLE -- Change Validation List Entry - VCP

CBX2053H -- PNLGRP -- Change Validation List Entry - Help

CBX2053X -- CMD -- Change Validation List Entry

CBX2054 -- RPGLE -- Remove Validation List Entry - CPP

CBX2054V -- RPGLE -- Remove Validation List Entry - VCP

CBX2054H -- PNLGRP -- Remove Validation List Entry - Help

CBX2054X -- CMD -- Remove Validation List Entry

CBX205 -- RPGLE -- Validation List Entry Commands - Services

CBX205B -- SRVSRC -- Validation List Entry Commands - Binder source

CBX205M -- CLP -- Validation List Entry Commands - Build commands

To create these Validation List Entry command objects, compile and run CBX205M, following the

instructions in the source header. As always, you'll also find compilation instructions in the

respective source headers.

Retrieve the source code for this API example.

Previously published related articles:

APIs by Example: Have a Peek at Validation List Entries

APIs by Example: User Function Registration APIs, Part 1

APIs by Example: User Function Registration APIs, Part 2

APIs by Example: User Function Registration APIs, Part 3

APIs by Example: Validation List APIs

APIs by Example: Profile Authorization Management

APIs by Example: Cryptographic Services APIs, Part 3

APIs by Example: Cryptographic Services APIs, Part 7

This article demonstrates the following Validation List APIs:

Add Validation List Entry (QsyAddValidationLstEntry) API

Verify Validation List Entry (QsyVerifyValidationLstEntry) API

Remove Validation List Entry (QsyRemoveValidationLstEntry) API

Find Validation List Entry (QsyFindValidationLstEntry) API

Find Validation List Entry Attributes (QsyFindValidationLstEntryAttrs) API

Page 6 of 7APIs by Example: A Validation List Entry's Life Cycle in CL Commands

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-validation-list-entrys-l...

Validation List APIs

Digital Certificate Management API

Retrieve the source code for this API example.

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-validation-list-entrys-

life-cycle-cl-commands

Page 7 of 7APIs by Example: A Validation List Entry's Life Cycle in CL Commands

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-validation-list-entrys-l...

