APIs by Example: Hidden Job SQL Information Exposed by Retrieve Job Information... Page 1 of 10

ﬂ print | close

APIs by Example: Hidden Job SQL Information Exposed by
Retrieve Job Information API

System iNetwork Programming Tips Newsletter

Carsten Flensburg
Carsten Flensburg
Thu, 04/28/2011 (All day)

In the preceding installment of the APIs by Example column, I showed an example
of how APIs at times offer access to more detailed information than corresponding

system CL commands. I also demonstrated how you, as an API programmer, can
add more functionality and other enhancements when you create your own API-
based versions of system CL commands. The Display Job Open Files
(DSPJOBOPNF) command presented last time is today accompanied by yet another
example of exploiting system APIs' access to useful information not easily obtained elsewhere.

Although the Display Job (DSPJOB) and Work with Job (WRKJOB) commands and their related
display panels have been enhanced repeatedly over time in order to reflect the conceptual changes
and functional enhancements provided for the IBM i OS job entity—such as activation groups,
mutexes, and threads—for some reason, IBM has not yet offered much detail as far as job SQL
information is concerned—in terms of the mentioned CL commands, that is. The Retrieve Job
Information (QUSRJOBI) API, however, has for some time been supporting a return format
exposing a job's SQL-related information. And with release 6.1, this offering has been significantly
enhanced with many new job SQL attributes.

The QUSRJOBI API job information return format name for SQL information is JOBI0900, and this
format is valid only for active jobs. For jobs waiting on a job queue or jobs that have completed, no
SQL information is available. I'm using the JOBIogoo SQL information format as the foundation for
the Display Job SQL Information (DSPJOBSQLI) command that I've created to accompany today's
APIs by Example article. Since release 6.1's predecessor, release 5.4, also added vital information to
the JOBI0900 return format, the DSPJOBSQLI command was designed to support this release as the
earliest.

While developing the DSPJOBSQLI command, however, I ran into some troubles concerning the
data actually returned by the QUSRJOBI API for the JOBI0900 return format. For release 5.4 and,
for example, prestart jobs waiting to become active, it turned out that some parts of the JOBIogoo
format contained "garbage" data. I've reported the issue to IBM, and as of this writing, I'm still
waiting for IBM's response. It appears, though, that the issue has disappeared on release 6.1, so for
now I've coded a workaround to ensure that the DSPJOBSQLI CPP does not fail due to invalid data
when run on release 5.4.

The QUSRJOBI API parameter interface as such is quite simple, yet the API is capable of accessing
lots of job information, all divided into currently 12 different return formats, at release 7.1:

JOBI0100 Basic performance information
JOBI0150 Additional performance information

http://iprodeveloper.com/print/rpg-programming/apis-example-hidden-job-sql-inform... 03-04-2014

APIs by Example: Hidden Job SQL Information Exposed by Retrieve Job Information... Page 2 of 10

JOBI0200 WRKACTJOB information

JOBION300 Job queue and output gqueue information
JOBI0400 Job attribute information

JOBIO500 Message logging information

JOBI0600 Active job information

JOBIO700 Library list information

JOBIO750 Extended library list information
JOBI0O800 Active job signal information

JOBI0900 Active job SQL information

JOBI1000 Elapsed performance statistics

As mentioned, today's article covers the use of format JOBI0o9oo0 and the active job SQL information
provided by that format. For more details on the many other formats, I suggest you follow the link at
the end of this article pointing to the QUSRJOBI API documentation in the IBM i Information
Center. As for the QUSRJOBI API, I've included the parameter list from said documentation below:

Required Parameter Group:

1 Receiver variable Output Char (*)

2 Length of receiver variable Input Binary (4)
3 Format of receiver information Input Char (8)

4 Qualified job name Input Char (26)
5 Internal job identifier Input Char (16)

Optional Parameter Group 1:
6 Error code I/0 Char (*)
Optional Parameter Group 2:

7 Reset performance statistics Input Char (1)

The first and second parameter defines the program variable available for the QUSRJOBI API to
return the selected job information as well as the size of this variable, respectively. The third
parameter specifies the format name defining the specific type of job information that you want to
obtain; for the example at hand, this will be the JOBIog9oo0 format, as explained above.

As the fourth and fifth parameter, you identify the job by job name, user name, and job number, or
by the internal job identifier. The latter is a system internal identifier of any given job returned by
other APIs, to let subsequent API calls locate the job faster than is possible with the qualified job
name. In this case, I use the qualified job name because this is what the DSPJOBSQLI command
interface provides.

For the QUSRJOBI API, the standard API error data structure is an optional sixth parameter. This
implies that you do not need to specify a parameter for the error data structure, unless, of course, you
want to handle errors encountered by the API by means of this data structure, or unless you want to
specify the seventh parameter defining whether the specified job's performance statistics should be
reset. The latter parameter, however, applies only to the QUSRJOBI API's format JOBI1000,
returning elapsed performance statistics. In short, optional parameters turn into required
parameters if you want to specify subsequent parameters. And if optional parameters are grouped,
you have to specify all parameters in the group if you specify one.

http://iprodeveloper.com/print/rpg-programming/apis-example-hidden-job-sql-inform... 03-04-2014

APIs by Example: Hidden Job SQL Information Exposed by Retrieve Job Information... Page 3 of 10

As for the optional API error data structure, the consequence of not specifying this is that the API
being called signals any encountered errors by issuing an exception message to the API caller. You
will therefore in your code need to cater for an exception message being returned by the API, in case
you leave out the optional error data structure parameter. You have a number of options as far as
evasive coding techniques are concerned, including coding a Monitor group, a CallP(e) error
operation code extender followed by a %Error condition, or a Program Status Subroutine (*PSSR).

In the code provided today, I do, however, employ an API error data structure and use this to
establish whether any errors were encountered when calling the QUSRJOBI API, letting me deal with

the situation accordingly. Anyway, here's the command prompt, exposing the very simple parameter
interface of the DSPJOBSQLI command:

Display Job SQL Information (DSPJOBSQLI)

Type choices, press Enter.

Job name * Name, *

User « « o o . . . Name

Number 000000-999999
Output+ L. * *, *PRINT

You specify the qualified job name and your preference in terms of whether the command output
should be displayed or printed with your job's spooled output. As always, a help text panel group is
included to further explain the command and its parameters. The type and extent of job SQL
information being displayed or printed depends on the type of SQL processing performed by the
specified job as well as the release on which the command is run. Below I've included an example of
an SQL Server job and the information returned on a release 5.4 system:

Display Job SQL Information
WYNDHAMW
23-04-11
12:07:19
Job OSQSRVR Type
*BATCH
User : QUSER Status
*ACTIVE
Number : 102037 SQL server mode
*CURJOB
RDB name Ce e e e e e WYNDHAMW

http://iprodeveloper.com/print/rpg-programming/apis-example-hidden-job-sql-inform... 03-04-2014

APIs by Example: Hidden Job SQL Information Exposed by Retrieve Job Information... Page 4 of 10

Query options library

SQL statement name ...t SQLSTATEMENT000021
SQL open cursors e ..t 1
SQL pseudo closed cursors : 0

Cum number of SQL cursors:

Full opens : 7

Pseudo opens : 23

Server mode:

Connecting job : 102031 /QYPSJSVR/QYPSJSVR
Connecting thread . . . : 00000044
More. ..

F3=Exit F5=Refresh Fl12=Cancel F22=Display entire field

Again, the panel and all its sections and fields displayed are documented with cursor-sensitive help
text that should cover any doubts about the exact interpretation of the screen content. The
information displayed includes the current or most recently run SQL statement in the specified job,
as in the example below. Note that the Time started information is shown only for currently active
SQL statements:

Display Job SQL Information
WYNDHAMW
23-04-11

12:07:19

Job OSQSRVR Type
*BATCH

User : QUSER Status
*ACTIVE

Number : 102037 SQL server mode
*CURJOB

http://iprodeveloper.com/print/rpg-programming/apis-example-hidden-job-sql-inform... 03-04-2014

APIs by Example: Hidden Job SQL Information Exposed by Retrieve Job Information... Page 5 of 10

Current SQL statement:

Status *COMPLETED

CCSID 65535

Time started

Statement UPDATE OMGTC.QAYPSJDT SET NAME = ?,
OWNER = 7?7, EI
M ID = ?, CLASS = ?, CATEGORY = ?, DESCRIPTION = ?, SHARING = ?,
STATUS = ?, V
ERSION = ?, CREATEDDATE = ?, CHANGEDDATE = ?, DATASIZE = ?, DATA = ?

WHERE MCK

Ey =72

Bottom

F3=Exit F5=Refresh Fl12=Cancel F22=Display entire field

The current SQL statement Coded Character Set Identifier (CCSID), according to the API
documentation, defines the CCSID of the current SQL statement string. During my tests on systems
at release 5.4 and 6.1, however, it quickly turned out that the SQL statement string appears to be
returned in the job CCSID of the job performing the QUSRJOBI API call. T have not yet had a chance
to run this observation by IBM, so I've included code in the DSPJOBSQLI CPP to let you convert the
SQL statement string, should this behavior change in the future. This is the part of the code that
you'll need to change:

//
//
//
//
//
//
//
//
//
//
//

http://iprodeveloper.com/print/rpg-programming/apis-example-hidden-job-sql-inform...

The Current SQL statement appears to be returned in the job
CCSID. Should this change in the future, you can activate
CCSID-based conversion of the SQL statement string by removing
the double slashes (//) for the statement below:

CurSqglStmLng

CvtStrCcsId(JOBI0N900.SglStmCcsId
$Subst (JOBIN900
JOBI0900.SglStmOfs + 1
JOBI0900.SglStmLen

));

03-04-2014

APIs by Example: Hidden Job SQL Information Exposed by Retrieve Job Information... Page 6 of 10

// If you activate CCSID-based conversion of the SQL statement
// string, you must also comment out or remove the statement
// below:

CurSglStmLng = %Subst(JOBI0900
JOBI0900.SglStmOfs + 1
JOBI0900.SglStmLen
) ;

While performing my tests, I also experienced the QUSRJOBI API returning SQL cursor names that
do not conform to the regular IBM i naming convention. Some SQL cursors were named *DUMMY
and had binary data appended, while other SQL cursor names were preceded by a single blank
character and also had binary data appended. Here's IBM's explanation of that finding:

*DUMMY cursors exist when unique SQL statements are prepared using a statement
name that isn't unique. The SQL cursor is changed to a * DUMMY cursor to allow the
possibility of the cursor being re-used in the future.

Prepared SQL statements are maintained within a thread scoped internal data structure
called the Prepared Statement Area (PSA). This structure is managed by the database
and can be compressed. The initial threshold of the PSA is small and gradually grows
through use. For an application with heavy *DUMMY cursor use, they will observe
*DUMMY cursors being hard closed at each PSA compression.

The QSQBIGPSA data area control can be used to indicate that the application wants to
start with a large size for the PSA threshold. By using this option, the application will
skip all the PSA compressions it takes to reach a large PSA capacity.

The QSQCSRTH data area control can be used to limit the number of * DUMMY cursors.
*DUMMY cursors are hard closed on PSA compression and during the cleanup
processing of a PREPARE statement when the threshold is exceeded. The default
threshold level is 150.

"CURSR' cursors are created when re-preparing a statement where the statement
results in an internal cursor being created (cursor name is ' CURSR'). When the
statement is re-prepared, the internal cursor for the previous statement is changed to a
dummy cursor.

We are unable to turn the CURSR named cursor into a more easily consumed name. We
precede CURSR with the blank character to insure that our internal cursor does not
conflict with an actual user declared cursor. The decision to use the space leading name
approach was made a long time ago. The API documentation will be updated in the next
release.

In addition to the job SQL information demonstrated in the above example, other SQL-related job
attributes may be displayed, depending on the type of SQL processing performed by the job in
question. This includes details such as:

« SQL object name, library, and type (*PGM, *SRVPGM, *SQLPKG)
« SQL handle and descriptor counts
» SQL client registry details (application name, program ID, user ID, etc.)

http://iprodeveloper.com/print/rpg-programming/apis-example-hidden-job-sql-inform... 03-04-2014

APIs by Example: Hidden Job SQL Information Exposed by Retrieve Job Information... Page 7 of 10

« SQL interface details (interface name, type, and level)
+ Server job local port number
« Client IP address and address type for server job

Most of the above SQL information was added to format JOBI09o0 with release 6.1, so it will not be
available when the DSPJOBSQLI command is run on release 5.4.

In order to demonstrate the practical use of the DSPJOBSQLI command—as well as the
DSPJOBOPNF command presented last time—I've also included a Work with SQL Server Jobs
(WRKSQLSVR) command with today's article. The WRKSQLSVR command lets you list all your
system's SQL server jobs, based on user name, connecting user name, job status, and/or current user
name. The SQL server jobs are named QSQSRVR and identified by the server type job attribute
QIBM_SQL. The QSQSRVR SQL server jobs are employed by many different types of applications.
I've included a list below of various application types taking advantage of the QSQSRVR jobs,
excerpted from an IBM Technote:

« SQL CLI applications, which enable the SQL_ATTR_SERVER_MODE environment attribute
» Native JDBC applications

« PHP applications, which use IBM DB2 extensions

+ WebSphere Application Server

« IBM Directory Server

« IBM Management Central

To monitor these applications and the activity they are performing through the QSQSRVR SQL
server jobs, the WRKSQLSVR command comes in handy. Here's the WRKSQLSVR command
prompt:

Work with SQL Server Jobs (WRKSQLSVR)

Type choices, press Enter.

User name . . . « « « « « « < . *ALL Name, generic*,
*ALL. ..

Connecting user *ALL Name, *ALL

Job status *ACTIVE *ACTIVE, *JOBQ,
*OUTQ. ..

Current user *ALL Name, *ALL

Running the WRKSQLSVR command with default parameters as in the following example

WRKSQLSVR USER (*ALL)
CONNUSER (*ALL)
STATUS (*ACTIVE)

http://iprodeveloper.com/print/rpg-programming/apis-example-hidden-job-sql-inform... 03-04-2014

APIs by Example: Hidden Job SQL Information Exposed by Retrieve Job Information... Page 8 of 10

on my system returns the list panel displayed below:

Work with SQL Server Jobs

WYNDHAMW

23-04-11
11:58:46
User *ALL Connect user: *ALL

Type options,

2=Change

4=End
10=Display job log
11=Job open files

press Enter.

5=Work with

12=Connecting job

8=Job SQL information

14=Connecting user jobs

Current ————————— Connecting-----
Opt Job User -—--Status--- Job User

Number

QSQSRVR QDIRSRV ACTIVE CNDW QODIRSRV QDIRSRV
091475

QSQSRVR QDIRSRV ACTIVE CNDW QDIRSRV QDIRSRV
091475

QSQSRVR QDIRSRV ACTIVE CNDW QODIRSRV QDIRSRV
091475

QSQSRVR QDIRSRV ACTIVE CNDW QDIRSRV QDIRSRV
091475

QSQSRVR QDIRSRV ACTIVE CNDW QODIRSRV QDIRSRV
091475

QSQSRVR QSECOFR ACTIVE CNDW QYPSJSVR QYPSJSVR
102031

QSQSRVR QSECOFR ACTIVE CNDW QYPSJSVR QYPSJSVR
102031

QSQSRVR QSECOFR ACTIVE CNDW QYPSJSVR QYPSJSVR
102031

More. ..

Parameters or command

===>

F3=Exit F4=Prompt F5=Refresh F6=SQL commands F9=Retrieve
Fll=View 2

Fl2=Cancel F21=Print list F22=Work with active jobs

F24=More keys

http://iprodeveloper.com/print/rpg-programming/apis-example-hidden-job-sql-inform...

03-04-2014

APIs by Example: Hidden Job SQL Information Exposed by Retrieve Job Information... Page 9 of 10

The list panel options in addition to regular job administration tasks such as change, end, work with
jobs, and display the job log also let you run the DSPJOBSQLI and DSPJOBOPNF commands for the
selected job(s) using options 8 and 11. List panel options 12 and 14 let you execute the WRKJOB and
WRKUSRJOB commands for the connecting job and connecting job's current user profile,
respectively. For more details, please refer to the WRKSQLSVR command's and list panel's help text.

This APIs by Example includes the following sources:

CBX228

CBX228E
CBX228H
CBX228P
CBX228X

CBX229

CBX229E
CBX229H
CBX229L
CBX229P
CBX229V
CBX229X

CBX228M
CBX229M

RPGLE
RPGLE
PNLGRP
PNLGRP
CMD

RPGLE
RPGLE
PNLGRP
RPGLE
PNLGRP
RPGLE
CMD

CLP
CLP

Display
Display
Display
Display
Display

Work with
Work with
Work with
Work with
Work with
Work with
Work with

Job
Job
Job
Job
Job

SQL
SQL
SQL
SQL
SQL
SQL
SQL

SQL
SQL
SQL
SQL
SQL

Information
Information
Information
Information
Information

Server Jobs -
Server Jobs -
Server Jobs -
Server Jobs -
Server Jobs -
Server Jobs -
Server Jobs

Display Job SQL Information
Work with SQL Server Jobs -

- CPP

- UIM Exit Program
- Help

- Panel Group

CCP

UIM General Exit Pgm
Help

UIM List Exit Program
Panel Group

VCP

- Build command
Build command

To create all these objects, compile and run the CBX228M and CBX229M programs, following the
instructions in the source headers. You'll also find compilation instructions in the respective source

headers.

Related Articles:

APIs by Example: List Open Files API, and the Display Job Open Files Command

APIs by Example: Use a Work Management API to List Server Jobs

IBM Documentation:

DB2 for i5/0S: User-Defined Servers to the Rescue

Subsystem Configuration for SQL Server Mode Jobs

i5/0S Server Table

QSYS2.DUMP_SQI._CURSORS procedure

This article demonstrates the following APIs:

Retrieve Job Information (QUSRJOBI) API

Open List of Jobs (QGYOLJOB) API

Retrieve the source code for this API example.

http://iprodeveloper.com/print/rpg-programming/apis-example-hidden-job-sql-inform... 03-04-2014

APIs by Example: Hidden Job SQL Information Exposed by Retrieve Job Informati... Page 10 of 10

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-hidden-job-sql-
information-exposed-retrieve-job-information-api

http://iprodeveloper.com/print/rpg-programming/apis-example-hidden-job-sql-inform... 03-04-2014

