APIs by Example: Copying System i Message Descriptions Page 1 of 10

ﬂ print | close

APIs by Example: Copying System i Message Descriptions

System iNetwork Programming Tips Newsletter

Carsten Flensburg

Carsten Flensburg
Thu, 03/26/2009 (All day)

Message files and message descriptions offer a convenient method of storing messages and text. The
IBM i OS itself makes extensive use of message descriptions for all sorts of user communication,
program to program messages, display panel constants, command definition prompts, and error text
to mention some of the most prominent and visual employments. I've previously published a couple
of articles discussing and displaying how to use message descriptions as an extension to the system
request menu as well as how to replace display file constants with message identifiers and texts. Look
below for links to these articles.

Being such a versatile and widely used facility, message files and message descriptions also have a lot
to offer in the domain of application development. In terms of for example user dialog, error
handling, and multi-language support, message descriptions provide a flexible and comprehensible
approach that can easily be incorporated and maintained by using the many message handling APIs
and CL commands available. Having taken advantage of the message facilities included with the IBM
i, I've often needed to copy a message description, but IBM hasn't provided a Copy Message
Description (CPYMSGD) command, but this article does!

If you need to copy message descriptions from one message file to another, the Merge Message File
(MRGMSGF) command helps you, but only if the message identifier won't change. Copying and
renaming a message description is impossible. Because the Retrieve Message (QMHRTVM) API can
return all message description attributes, I can write my own CPYMSGD command! More about the
CPYMSGD command in a minute.

A message description has quite a few attributes. A quick count on the Add Message Description
(ADDMSGD) command prompt finds 17 parameters in addition to the primary Message identifier
(MSGID) and Message file (MSGF) parameters. Some of these are really only useful for messages
sent by the IBM i, but others are valuable to programmers like me. I briefly mention some of the
most useful ones here, but I urge you to look up the ADDMSGD command's help text for more
details.

The Message (MSG) parameter holds the first-level message text that appears immediately on the
screen, in the joblog or where else a message queue or program message queue is displayed. The text
itself can have a maximum length of 132 bytes, but you can include substitution variables in the
format &1, &2, &3, etc. Each substitution variable is replaced on message display or retrieval by the
corresponding value defined by the Message data fields formats (FMT) list parameter and parsed
from the Message data (MSGDTA) string submitted with the message when it is sent. This is very
useful, as I show you later, if you want to tailor and adapt the final message text to reflect
information that is variable by nature.

http://iprodeveloper.com/print/rpg-programming/apis-example-copying-system-i-mes... 04-04-2014

APIs by Example: Copying System i Message Descriptions Page 2 of 10

Also note that if you display a message in a message queue, the message text is retrieved dynamically.
This implies that if a message description's message text is changed after the message is sent, you'll
see the current text on your screen as opposed to the text in effect when the message was sent.

The Second-level message text (SECLVL) parameter contains the part of the message text shown if,
for example, a message is prompted by using function key F1 to display the Additional Message
Information panel or if your job's log setting has been configured to include second-level help text.
The SECLVL text lets you specify up to 3000 bytes of additional information and help text to further
explain and detail the first-level message text.

Substitution variables are also allowed and in effect in this part of the message, which further
supports three message format control instructions (&N, &P, and &B) that let you control text
wrapping and indentation when the second-level message text is displayed on screen. And now that
we're talking about the second-level message text, this is also where you find an explanation of how
to use the format control instructions mentioned: On the ADDMSGD or CHGMSGD command's
SECLVL parameter press F1 to display the parameter's online help text and scroll down to get all the
details.

The Message data fields formats (FMT) parameter mentioned earlier defines a consecutive number
of substitution variables by data type and length. For each &n substitution variable defined in the
MSG or SECLVL parameter, a corresponding FMT list element must be present; otherwise an error
message is returned, and the ADDMSGD or CHGMSGD command fails. This behavior can be
annoying if you've spent a lot of effort composing the text parts of the message description, because
unless you specified the ADDMSGD or CHGMSGD command on a command line, you have to start
all over again if you run into a mismatch between substitution variables and their FMT specified
definitions.

There's also an impressive number of message attributes enabling you to control the interaction
between a user and an inquiry type of message: The Reply type (TYPE), Maximum reply length
(LEN), Valid reply values (VALUES), Special reply values (SPCVAL), Range of reply values
(RANGE), Relationship for valid replies (REL) and the Default reply value (DFT) parameters let you
compose a set of rules enforced by the OS when a user enters a value and tries to respond to an
inquiry message. This ability can dramatically reduce the number of variations that you have to deal
with in the program receiving the reply.

I leave the rest of the message description attribute to your own study. Apart from the online help
text referred to earlier, you'll also find a lot of information covering this topic in the CL. manual. In
the release 5.4 version of this manual, the section documenting the message concept begins on page

452.

As for examples of how to exploit message files and descriptions in an application development
context apart from the examples published earlier and mentioned herein, there's of course the
straightforward approach much similar to how the IBM i incorporates messaging in its components.
The basic steps involve using the Send program message (SNDPGMMSG) command or
(QMHSNDPM) API to send predefined message descriptions contained in a message file. The send
program message command or API allows you to configure a number of parameters to control the
target message queue, message data, message type and severity, and so on. You'll find plenty of
examples of this type of usage in practically all previously published APIs by Examples utilities.

Another approach involves the use of message files and descriptions as an application message and
text repository. Again, you create a number of message files and message descriptions, but instead of
sending the message directly, you use the Retrieve Message (QMHRTVM) API (or RTVMSG

http://iprodeveloper.com/print/rpg-programming/apis-example-copying-system-i-mes... 04-04-2014

APIs by Example: Copying System i Message Descriptions Page 3 of 10

command) to retrieve the message text, optionally specifying a string of message data to replace
embedded substitution variables. Developing a naming scheme for your message descriptions,
message files, and libraries lets you devise a simple yet powerful and transparent message and text
store.

For the sake of demonstrating the basic idea, let's take an example of how to support a variety of
application modules, country languages, and product brands. The design objective is to return a
single message or text string based on a unique message ID in the range of 1 to 9999 and an input of
three contextual parameters from the application:

« A three-character application ID defining the origin of the request.

» A numeric ISO country code defining the language in which to return the text.

« A three-character brand code allowing you to differentiate the dialogue based on product
branding requirements.

A naming scheme supporting the above requirement could be established as follows:

» Message ID is composed by application ID and message ID in the format AAAMMMM
» Message file name is composed by company code and country code in the format XXXXCCC
+ Library name is composed by company code and brand code in the format XXXXBBB

A=Application ID
M=Message ID
X=Company code
B=Brand code

So for company ACME, Inc.'s web application for the brand DeLuxe's German website, you would
end up with the following naming scheme:

+ Message IDs in the range WEB0001-WEB9999
+ Message file name ACME280
 Library name ACMEDLX

Adding new applications, countries, and brands in this scheme is structurally a fairly simple task (but
due to involved translation efforts, potentially work intensive). To establish support for German and
UK English websites as well as for message ID 201, the following commands would be executed:

CRTLIB ACMEDLX

CRTMSGF ACMEDLX/ACME280

CRTMSGF ACMEDLX/ACMES826

ADDMSGD MSGID(WEB0201) MSGF(ACMEDLX/ACME280) MSG('User ID &1 ist
unbekannt.") FMT((*CHAR 10))

5. ADDMSGD MSGID(WEB0201) MSGF(ACMEDLX/ACME826) MSG('User ID &1 is
unknown.") FMT((*CHAR 10))

B whd =

Retrieving the messages and texts can then be done by a single service program subprocedure
defining an interface along the following lines:

**—-— Retrieve message:

D RtvMsg Pr 256a Varying
D PxBrdId 3a Value

D PxAppId 3a Value

http://iprodeveloper.com/print/rpg-programming/apis-example-copying-system-i-mes... 04-04-2014

APIs by Example: Copying System i Message Descriptions

D PxCtrCod
D PxMsgId

D PxMsgDta
(*NoPass)

3a
4a
128a

Value
Value

Varying Const Options

Page 4 of 10

Retrieving the applicable message text would then be simply a matter of concatenating the relevant
parameters and executing the APT call:

**-— Local variables:

D MsgId S

D MsgFil s

D MsgLib s

D MsgDta S

**-- Local constants:

D RPL SUB VAL c

D NOT FMT CTL c

D COMP_ID C

D NULL C

/Free
MsgId = PxApplId + PxMsgld;
MsgFil = COMP ID + PxCtrCod;
MsgLib = COMP ID + PxBrdId;

If %Parms >= 5;

MsgDta

Else;
MsgDta

EndIf;

RtvMsgD (

) ;

= PxMsgDta;

NULL;

RTVMO100

%$Size (RTVMO100)
'RTVM0100"

MsgId

MsgFil + MsgLib
MsgDta

%Len (MsgDta)
RPL SUB VAL

NOT FMT CTL
ERRC0100

If ERRC0100.BytAvl > *Zero;

Return
Else;
Return

EndIf;

/End-Free

http://iprodeveloper.com/print/rpg-programming/apis-example-copying-system-i-mes...

NULL;

Ta
10a
10a

256a

%Subst (RTVM0100.Msg:

1:

Varying

\l *YES'
TENO !
'ACME'

|l

RTVM0100.RtnMsgLen

04-04-2014

APIs by Example: Copying System i Message Descriptions Page 5 of 10

And to retrieve the message text, the following lines of code in a program binding to the service
program in question would do the trick:

/Free
If VfyUsrId(CliRgs.UsrId) = *Off;
SvrRsp.MsgId = '0201"
SvrRsp.MsgDta = CliRgs.UsrId;
EndIf;

SvrRsp.MsgTxt = RtvMsg(CliRgs.BrdId

: CliRgs.AppId
CliRgs.RgsSite
SvrRsp.MsgId
SvrRsp.MsgDta

/End-Free

Depending on the combination of the Brand ID, Application ID, and Requesting Site, the same
message ID and message data can lead to differently worded messages in different languages with no
further programming efforts. I hope you get the picture of both the idea behind the message text
repository infrastructure and the relative simplicity of making tailored messages and texts available
to your applications and modules in such a setup. The above scheme of course can and should be
adapted to reflect the individual requirements applicable to each specific application or module.

Taking advantage of message descriptions and message files in the way described here will often
bring you into a situation in which using an existing message description as a model for a new one
will speed up the process significantly, especially if substitution variables are involved. That need
turned my attention to another utilization of the QMHRTVM API and more specifically its return
format RTVMo0400, which makes available all information required to perform a copy operation of a
message description.

The data structures embedded in the RTVM0400 format as well as the complex parameter lists of
the ADDMSGD command that I eventually use to create the copied message description, however,
turned my ambition of creating a Copy Message Description (CPYMSGD) command into a labor-
intensive task, as you might agree if you take a glance at the code accompanying this article. Given
the usefulness of the CPYMSGD command and the time it can help my colleagues and myself save
down the line while managing and adapting application message descriptions, this was time well
spent.

Apart from mapping API output to command input, I had to deal with the QMHRTVM API's
sensitivity to message file overrides. Calling the API in jobs in which one or more message file
overrides are in effect due to previous executions of the Override Message File (OVRMSGF) would
cause the API output to reflect the message file override, in case an override refers to the same
message file as the API message file input parameter. Some other APIs have input parameters to
define whether to ignore overrides, but alas the QMHRTVM API does not. So to ensure that the API
is returning information applying to the specific message file requested, you have to perform an
override to that message file immediately before the API call and delete the override again

http://iprodeveloper.com/print/rpg-programming/apis-example-copying-system-i-mes... 04-04-2014

APIs by Example: Copying System i Message Descriptions

Page 6 of 10

immediately after the API call. Although it works, I would prefer an API parameter to achieve the

same result.

The CPYMSGD command retrieves the message description attributes by means of a prompt
override program (POP), which, based on the two key input parameters Message ID and the qualified
Message file name, returns and formats all the necessary message information as a prompt string to
the CPYMSGD command. This method, however, implies that you must prompt the command in
order for the prompt override program to be called. Here's what the initial CP'YMSGD command

prompt looks like:

Type choices, press Enter.

Message identifier

Message file

Library+ . < . . *LIBL
*CURLIB

Copy Message Description

(CPYMSGD)

Name

Name

Name, *LIBL,

Entering an existing message ID and message file and pressing Enter causes the command's prompt
override program to fill in all other command parameters for you, as in the following example:

Copy Message Description (CPYMSGD)
Type choices, press Enter.
Message identifier > CPF22A5 Name
Message file > QCPFMSG Name
Library « > QSYS Name, *LIBL,
*CURLIB
To message identifier *MSGID Name, *MSGID
To message file *MSGF Name, *MSGF
Library Name, *LIBL,
*CURLIB
First-level message text 'Object &1 in &3 type *&2 not
secured by aut

http://iprodeveloper.com/print/rpg-programming/apis-example-copying-system-i-mes... 04-04-2014

APIs by Example: Copying System i Message Descriptions Page 7 of 10
horization list &4.'
Second-level message text '&N Cause The user

specified
authorization list &4 to be revoked from object &1 in &3, type *&2.
The specified
object is not secured by authorization list &4. &N Recovery

Use the

display object authority (DSPOBJAUT) command to determine what
authorization
list is securing the object, if any.
again with the

Issue the RVKOBJAUT command

authorization list that is securing the object to revoke the
authorization
list's authority.'

Severity code 40 0-99
Message data fields formats:

Data type *CHAR *NONE, *QTDCHAR,
*CHAR. ..

Length 10 Number, *VARY

*VARY bytes or dec pos 0 Number

Data type *CHAR *QTDCHAR, *CHAR,
*HEX. ..

Length 7 Number, *VARY

*VARY bytes or dec pos 0 Number

Data type *CHAR *QTDCHAR, *CHAR,
*HEX. ..

Length 10 Number, *VARY

*VARY bytes or dec pos 0 Number

Data type *CHAR *QTDCHAR, *CHAR,
*HEX. ..

Length 10 Number, *VARY

*VARY bytes or dec pos 0 Number

+ for more values
Reply type *NONE *CHAR, *DEC,

*ALPHA, *NAME...

http://iprodeveloper.com/print/rpg-programming/apis-example-copying-system-i-mes... 04-04-2014

APIs by Example: Copying System i Message Descriptions Page 8 of 10

Maximum reply length:

Length *NONE Number, *TYPE,
*NONE
Decimal positions Number
Valid reply values *NONE

+ for more values

Special reply values:

Original from-value *NONE

Replacement to-value

+ for more values

Range of reply values:

Lower value D, *NONE

Upper value

Relationship for valid replies:

Additional Parameters

Default program to call *NONE Name, *NONE

Library Name, *LIBL,
*CURLIB

Data to be dumped *NONE 1-99, *NONE,
*JOBINT...

+ for more values

Level of message:

Creation date *CURRENT Date, *CURRENT

Level number 1 1-99

http://iprodeveloper.com/print/rpg-programming/apis-example-copying-system-i-mes...

Relational operator *NONE *NONE, *EQ, *LE,
*GE, *GT...

Value

Default reply value *NONE

*JOB,

04-04-2014

APIs by Example: Copying System i Message Descriptions Page 9 of 10

Alert options:
Alert type o« *NO *IMMED, *DEFER,
*UNATTEND. . .
Resource name variable *NONE 1-99, *NONE
Log problem *NO *NO, *YES
Coded character set ID *JOB *JOB, *HEX, 37,
256, 273...

Specify either a To message identifier, a To message file, or both, then perform the desired changes
to the command parameters and press Enter. The specified message description will be created in
the specified message file. As always, you can also look up the command's online help text for more
details. As for the CPYMSGD command objects involved in the utility, here's a brief walk through to
give you an idea of how the command works:

The CPYMSGD command definition. This is pretty much a copy of the ADDMSGD command
with the addition of the TOMSGID and TOMSGF parameters.

The CBX2010 command prompt override program. The program is called by the command
prompt facility once the CPYMSGD command's two key parameters have been entered. The
program calls the QMHRTVM API to retrieve the specified message description's attributes
and subsequently formats and returns a command prompt string specifying all the CP'YMSGD
command's remaining input parameters.

The CBX201C command choice program uses Retrieve CCSIDs (QLGRTVCD) API to produce
a list of all available and supported CCSID values for the CPYMSGD command's CCSID
parameter. This is a function similar to the one that the ADDMSGD command provides. The
ADDMSGD command's choice program is, however, sensitive to the name of the command
calling it as this parameter controls the list of available CCSID values returned, so I had to
write my own.

The CBX201V command validity checker validates the primary CPYMSGD parameters among
other things to ensure that the specified message identifier and message file actually do exist.
The CBX201H help text panel group describes the command and all its parameters. The main
part of the keyword help text is simply imported from the ADDMSGD command's help text
panel group. Using this approach can be quite a time saver and ensures that both accurate and
detailed information is provided.

The CBX201 command processing program. This program retrieves the final CP.YMSGD
command parameters and formats an ADDMSGD command string defining all returned
parameters. The command string is eventually processed by the Process Command
(QCAPCMD) API and possible errors are returned immediately to the caller by means of
another message handling API, the Move Program Message (QMHMOVPM) API.

I've done my best to test the CPYMSGD command thoroughly, but given the number of parameters
and possible combinations hereof, I cannot completely ensure that no unforeseen issues surface
when you put the command to work. So please give the CPYMSGD command a test run before
putting it into production. And be sure to let me know if you run into any issues using it.

This APIs by Example includes the following sources:

http://iprodeveloper.com/print/rpg-programming/apis-example-copying-system-i-mes... 04-04-2014

APIs by Example: Copying System i Message Descriptions Page 10 of 10

CBX201 -- RPGLE -- Copy Message Description - CPP

CBX201C -- RPGLE -- Copy Message Description - Choice program
CBX201H -- PNLGRP -- Copy Message Description - Help

CBX2010 =-- RPGLE -- Copy Message Description - POP

CBX201V -- RPGLE -- Copy Message Description - VCP

CBX201X -- CMD -—- Copy Message Description

CBX201M -- CLP -— Copy Message Description - Build command

To create all these objects, compile and run CBX201M, following the instructions in the source
header. As always, you'll find compilation instructions in the respective source headers.

IBM documentation:

CL message concept

Message ID overview

Previously published related articles:

APIs by Example: Message Handling (QMHRTVM/QMHMOVPM/QMHRCVPM)
- System request menu enhancement

APIs by Example: User Index APIs, Part One: Create User Index (CRTUSRIDX) command

APIs by Example: User Index APIs, Part Two: Convert Display File Constants (CVTDSPFCNS)
command

This article demonstrates the following Message Handling APIs:

Retrieve Message (QMHRTVM)

Move Program Message (QMHMOVPM) API

You can retrieve the source code for this API example from our website.

Source URL: http:
message-descriptions

iprodeveloper.com/rpg-programming/apis-example-co

http://iprodeveloper.com/print/rpg-programming/apis-example-copying-system-i-mes... 04-04-2014

