APIs by Example: Have a Peek at Validation List Entries Page 1 of 7

ﬂ print | close

APls by Example: Have a Peek at Validation List Entries

System iNetwork Programming Tips Newsletter

Carsten Flensburg

Carsten Flensburg
Thu, 05/28/2009 (All day)

I've discussed and demonstrated validation lists in a number of articles and utilities previously
published in this newsletter. On these occasions, I've used validation lists to store sensitive session
information as well as cryptographic encryption keys. Basically though, you can think of validation
lists as password files, storing a user ID and an encrypted password, and as such I've also
successfully exploited validation lists when developing web applications requiring a secure
authorization mechanism. In addition to user ID and password, a few other validation list attributes
are supported--more about this in a minute.

Although IBM provides native CL. commands to create and delete a validation list object, you have to
resort to APIs when it comes to creating, changing, retrieving, verifying, or deleting validation list
entries. On the one hand, this constraint makes it a bit easier to control who is accessing validation
list entries because programming skills are involved, but on the other hand things are also a bit more
complicated when it comes to testing and debugging your applications that take advantage of
validation lists--not to mention the efforts involved in the administration of the validation list
entries. So why not create a few CL. commands to close the gap, the first of which is presented in
today's APIs by Example.

Let's start with a brief description of the validation list entry. A validation list entry is divided into
three directly accessible main attributes:

1. Entry ID (up to 100 bytes)
2. Entry data (up to 1000 bytes)
3. Encrypted data (up to 600 bytes)

Each of the above attributes also have a related Coded Character Set Identifier (CCSID) attribute
available to identify the CCSID, if any, of the value stored in the Entry ID, the Entry data and the
Encrypted data, respectively. Also, the length of each of the attributes must be stored with it, and
this requirement has the impact that trailing blanks in the Entry ID, if included in the length
specification, actually must be included again when you try to locate this validation list entry. As the
example in the Validation List APT manual demonstrates this property, "Smith" and "Smith " are
considered different Entry IDs due to the difference in length. As alleged, the Entry ID is where
you'd store a user name or identifier, and it constitutes the entry key when you need to retrieve,
verify, or delete the validation list entry.

The Entry data attribute simply offers a space to store unformatted data, a data structure, or for
example a text string describing the entry. The Encrypted data can be stored in one of two ways,
depending on the value of the system value QRETSVRSEC (retain server security data). If the
QRETSVRSEC system value is 0 (zero), the encrypted data is only one-way encrypted, so that the
clear value can't be retrieved again. You can still verify the encrypted value, though, because similar
to the System i password verification method, the value to compare against is simply encrypted using

http://iprodeveloper.com/print/rpg-programming/apis-example-have-peek-validation-1... 04-04-2014

APIs by Example: Have a Peek at Validation List Entries Page 2 of 7

the same encryption key prior to the verification process, so that the encrypted values are compared
during this process.

If the QRETSVRSEC system value is set to 1 (one), however, the choice is yours, and the encrypted
data retrieval option is defined by the QsyEncryptData attribute value submitted to the API, when
you add or change the validation list entry. If all you need is to be able to verify a password, the one-
way encryption is of course the safest method to apply. If you need to be able to access the encrypted
data again, as I did in the two examples referred to above, setting the QsyEncryptData attribute to '1'
will enable you to do so.

If you've stored the encrypted data in a decryptable form, a CL. command is actually available (as of
release 5.2) to allow you to remove it, system wide though. The Clear Server Security Data
(CLRSVRSEC) command lets you clear all decryptable authentication information associated with
user profiles and validation list (*VLDL) entries on your system. Prior to release 5.2, all this
information was implicitly removed when the QRETSVRSEC system value was changed from 1 to o.
Performing such a change on subsequent releases only prohibits the retrieval of the decryptable data;
the data remains in the validation list entry until the CLRSVRSEC command is run; it just can't be
retrieved by any means as long as QRETSVRSEC is 0. Once QRETSVRSEC is changed back to 1, the
encrypted data will again be retrievable, provided that the CLRSVRSEC command was not run in the
mean time.

Validation list entries also contain information maintained by the system and enabling you to
establish and enforce password security and policy. The following four events are recorded and
immediately available by using the appropriate API:

Validation list entry create timestamp

Encrypted data change timestamp

Encrypted data last verified timestamp

The count of invalid verification attempts since last successful

B w N

It is, however, up to you to actually take advantage of this information and put the necessary control
and monitoring facilities in place.

As far as creating, accessing, and deleting validation list entries, quite a few APIs are available in
both OPM and ILE versions. Here's the list for release 5.4, and I've removed all duplicate OPM APIs:

« Add Validation List Entry (QsyAddValidationLstEntry()

« Change Validation List Entry (QsyChangeValidationLstEntry()

« Convert Validation List (QSYCVTVL)

+ Find First Validation List Entry (QsyFindFirstValidationLstEntry()
« Find Next Validation List Entry (QsyFindNextValidationLstEntry()
« Find Validation List Entry (QsyFindValidationLstEntry()

+ Find Validation List Entry Attributes (QsyFindValidationLstEntryAttrs()
« Open List of Validation List Entries (QSYOLVLE)

» Remove Validation List Entry (QsyRemoveValidationLstEntry()

« Verify Validation List Entry (QsyVerifyValidationLstEntry()

+ Add Validation List Certificate (QsyAddVIdICertificate)

» Check Validation List Certificate (QsyCheckVldICertificate)

« List Validation List Certificates (QsyListVldlCertificates)

« Remove Validation List Certificate (QsyRemoveVIdICertificate)

http://iprodeveloper.com/print/rpg-programming/apis-example-have-peek-validation-1... 04-04-2014

APIs by Example: Have a Peek at Validation List Entries Page 3 of 7

For the purpose of displaying a known validation list entry and its attributes, the Find Validation List
Entry (QsyFindValidationLstEntry() and Find Validation List Entry Attributes
(QsyFindValidationLstEntryAttrs() APIs do the job nicely. To show you how, I've created the Display
Validation List Entry (DSPVLDLE) command and the associated command processing program.
Here's how the command prompt looks:

Display Validation List Entry (DSPVLDLE)

Type choices, press Enter.

Validation list Name
Library *LIBL Name, *LIBL,

*CURLIB

Entry ID .

Coded character set identifier *DFT 1-65534, *DFT,
*HEX

Output format *CHAR *CHAR, *HEX

Output O . .. * *, *PRINT

The qualified name of the validation list and the entry ID are the command's key parameters,
uniquely identifying the validation list entry to display. The Coded character set identifier defines
the CCSID of the entry ID and is as such not directly used as a search argument but merely identifies
the CCSID of the provided entry ID. You can choose to display the entry ID, entry data, and
encryption data (if available) in either character or hexadecimal format, depending on the special
value provided for the Output format (OUTFMT) parameter. And finally, the Output (OUTPUT)
parameter decides whether the validation list entry should be displayed or printed. An online help
text panel group is provided to explain all command parameters in detail.

Below is an example of how entry ID "o " (8 trailing blanks) in the QSASRVID2B validation list
looks on my system. Here's page 1:

Display Validation List Entry

WYNDHAMW
23-05-09
19:41:42
Validation list . . : QOSASRVID2B
Library : QUSRSYS

http://iprodeveloper.com/print/rpg-programming/apis-example-have-peek-validation-1... 04-04-2014

APIs by Example: Have a Peek at Validation List Entries

Entry ID

CCSID

Length

Entry data
03-13-16.06.02
810

CCSID

Length

More. ..

Press enter to continue.

F3=Exit F5=Refresh

Page 4 of 7

37

940665-58CAB V5R2MOP20003I0Q2004-

37

50

Fl2=Cancel F22=Display entire field value

Page down and see the remaining validation list entry information on page 2:

WYNDHAMW

19:41:42
Validation list

Library

Encrypted data

Display Validation List Entry

23-05-09

QSASRVID2B

QUSRSYS

oKpy#4S55%S$ xhME [—

http://iprodeveloper.com/print/rpg-programming/apis-example-have-peek-validation-1... 04-04-2014

APIs by Example: Have a Peek at Validation List Entries Page 5 of 7

CCSID= 37
Length : 16
Create timestamp : 2005-08-24-16.05.43.858
Encrypted data timestamp . . : 2005-08-24-16.05.43.858
Data verified timestamp . . : *NONE
Invalid verification count . : 0
Bottom
Press enter to continue.
F3=Exit F5=Refresh Fl2=Cancel F22=Display entire field value

Online help text is also provided for the above display panel. Simply position the cursor and press F1
to see the help text for the chosen field or panel segment. Note that the encrypted data is included in
the display only if the requesting user profile has *ALLOBJ and *SECADM special authority. In
addition to regular object authority to the validation list in order to access the list entries, *USE,
*ADD, and *UPD data authority is also required to retrieve the encrypted data. If you want even
more granular control you could employ the Function Usage facility to decide which user profiles
should be allowed to display the encrypted data using the DSPVLDLE command. I've covered the
Function Usage concept and APIs in earlier articles, so please look up the links below for code
examples and more information on this topic.

On a related note, release 5.4 introduced a new validation list object model, which now allows a
validation list to grow to a maximum size of 1TB, instead of the original 4GB validation list capacity.
The IBM announcement of this change also notes that the existing entries are stored more efficiently
in a 1TB validation list. To allow existing validation lists to take advantage of this improvement, IBM
included the Convert Validation List (QSYCVTVL) API with the mentioned release.

While the simple API parameter structure of this API makes it straightforward to call the API from a
command line, to make it even easier I've included a CL command interface (CVTVLDL) to the API
as well as online help text to document the change and its implications. If object backward

http://iprodeveloper.com/print/rpg-programming/apis-example-have-peek-validation-1... 04-04-2014

APIs by Example: Have a Peek at Validation List Entries

Page 6 of 7

compatibility is an issue for you, please note that if a validation list is converted to a 1TB validation
list, it can't be saved to a release prior to 5.2. The DSPVLDLE and CVTVLDL commands are the first
of a number of validation list commands that I will be presenting in the API by Example column,
look for more validation list coverage and commands in future issues of this newsletter.

This APIs by Example includes the following sources:

CBX204 -—- RPGLE --
CBX204E -- RPGLE --
CBX204H -- PNLGRP --
CBX204P -- PNLGRP --
CBX204V -- RPGLE --
CBX204X -- CMD --
CBX204M -- CLP --
CBX2041H -- PNLGRP --
CBX2041X -- CMD --

Display Validation List
Display Validation List
Display Validation List
Display Validation List

Display Validation List

Display Validation List

Display Validation List

Convert Validation List
Convert Validation List

Entry
Entry
Entry
Entry

Entry

Entry

Entry

- Help

CPP
UIM General Exit
Help

Panel Group

VCP

Build command

To create all these DSPVLDLE command objects, compile and run CBX202M, following the
instructions in the source header. As always, you'll also find compilation instructions in the
respective source headers, and these guidelines should help you compile the CVTVLDL command

objects as well.
IBM Documentation:

Validation List Objects

Planning the Use of Validation List Objects

Validation list on HTTP Server

Previously published related articles:

Securing Web Servers by Environment

APIs by Example: User Function Registration APIs, Part 1

APIs by Example: User Function Registration APIs, Part 2

APIs by Example: User Function Registration APIs, Part 3

APIs by Example: Validation List APIs

APIs By Example: Profile Authorization Management

APIs by Example: Cryptographic Services APIs, Part 3

APIs by Example: Cryptographic Services APIs, Part 7

http://iprodeveloper.com/print/rpg-programming/apis-example-have-peek-validation-1... 04-04-2014

APIs by Example: Have a Peek at Validation List Entries Page 7 of 7

This article demonstrates the following Validation List APIs:

Convert Validation List (QSYCVTVL) API

Find Validation List Entry (QsyFindValidationLstEntry) API

Find Validation List Entry Attributes (QsyFindValidationLstEntryAttrs) API

Validation List APIs

Digital Certificate Management APIs

Retrieve the source code for this API example.

Source URL: http://iprodeveloper.com /rpg-programming/apis-example-have-peek-validation-

list-entries

http://iprodeveloper.com/print/rpg-programming/apis-example-have-peek-validation-1... 04-04-2014

