APIs by Example: New Open List API Offers Enhanced Interface to History Log Page 1 of 10

ﬂ print | close

APIs by Example: New Open List APl Offers Enhanced
Interface to History Log

System iNetwork Programming Tips Newsletter

Carsten Flensburg
Carsten Flensburg
Thu, 06/23/2011 (All day)

Release 6.1 included a new Open List of History Log Messages (QMHOLHST) API, which in itself
offers program access to the contents of the system history log but also further enhances the filtering
options compared to the selection parameters offered by the old Display Log (DSPLOG) CL
command. In previous installments of APIs by Example, I've presented a number of APIs and
accompanying utilities that demonstrated the enhancement opportunities that more recent APIs
often make available to API programmers, in comparison to older CL. command counterparts.

In today's article, I continue this effort, taking advantage of the QMHOLHST API. In addition to an
array of typical Open List API parameters, this API also includes a couple of parameters that let you
configure the API output. You can control both the CCSID and the time zone applied to text- and
time-related return information, respectively. I tie all this together in the new Display History Log
(DSPHSTLOG) command that I present today and continue in an upcoming issue of this column.

As I've demonstrated in earlier APIs by Example articles, using APIs also offers opportunities in
terms of adding to the information being displayed or listed as a result of the API-driven utility
developed. In this case, the DSPHSTLOG command's list panel includes a separate list view
immediately revealing the message ID, severity, and type, as well as sending time and job
information. This is the intriguing part of API programming, the ability for you to tailor the
functionality and usability to meet your exact requirements, thereby surpassing limitations imposed
by the system's native offering.

To get started, let me introduce you to the QMHOLHST API's parameter list:

1 receiver variable Output Char (*)

2 length of receiver variable Input Binary (4)
3 format name Input Char (8)

4 list Information Output Char (80)
5 number of records to return Input Binary (4)
S message selection information Input Char (*)

7 CCSID Input Binary (4)
8 time zone Input Char (10)
9 error code I/0 Char (*)

The QMHOLHST API's first five parameters are common to most Open List APIs. The receiver
variable, the length of the receiver variable, and the format name all define the area available for the
API to return its information as well as the format of the information returned. The fourth parameter
is an API standard List information data structure returned by the Open List API in order to

http://iprodeveloper.com/print/rpg-programming/apis-example-new-open-list-api-offe... 03-04-2014

APIs by Example: New Open List API Offers Enhanced Interface to History Log Page 2 of 10

communicate the outcome of the API call back to the caller of the API. This information includes the
following:

« the total number of records available in the list

« the number of records returned in the receiver variable

« arequest handle uniquely identifying the list being built

« the fixed record length of each block of information returned in the receiver variable. For
variable-length records, the length is returned in the record

« an information complete indicator defining the condition of the information returned

« the date and time the list was created

« a list status indicator signaling how to proceed with the list processing

« the size, in bytes, of the information returned in the receiver variable

« the ordinal number in the list of the first record returned in the receiver variable

All this information lets you navigate the open list and process the returned information correctly,
without having to make assumptions or hard-code lengths and sizes. I go into more detail about this
later.

The fifth parameter, the number of records to return, in the context of Open list APIs usually serves
two purposes. In the case at hand, there's even a third function of this parameter. The most obvious
information conveyed by this parameter is of course how many records you want the QMHOLHST
API to return in the receiver variable. The not-so-obvious implication of this parameter is how the
list is built:

« Specifying a zero for this parameter causes the list to be built asynchronously by a separate
server job. No records will be returned when calling the API, and control will be returned to
the caller immediately, but the list build will commence and make list records available for
subsequent calls to the Get List Entries (QGYGTLE) API, which will then be in charge of
processing the entire list.

 Specifying a -1 in turn causes the list to be built synchronously in the same job calling the
QMHOLHST API. This implies that control isn't returned to the calling program until the
complete list has been built. As many records as will fit into the receiver variable are returned
to the API caller, and the rest of the available records must then be processed by means of calls
to the QGYGTLE API.

« If a positive number of records is specified, at least that many records are built synchronously
(in order to return those records immediately to the caller of this API), and the remainder are
built asynchronously by a server job. The remainder of the records in the list can be accessed
with the QGYGTLE API.

The QMHOLHST API further uses number of records to return a parameter for a purpose relating to
the system's implementation of the history log function. All messages sent to the history log message
queue QHST in library QSYS are eventually written to the QHST history log files. These writes are,
however, buffered, meaning that at some point in time messages may exist in the QHST log message
queue that haven't yet been written to the QHST log files. Because the QMHOLHST API is retrieving
the history log messages from the QHST log files, and not the ditto message queue, the API supports
the special value -2 as the number of records to return. Here's why:

Specifying the value -2 for the parameter in question causes the QMHOLHST API to flush all job

messages in the write buffer to the QHST log files, letting a following API call process all history log
messages sent at that point in time. For a flush call to the QMHOLHST API to be allowed, you must
also specify a zero for the size of the receiver variable parameter, indicating that the regular purpose

http://iprodeveloper.com/print/rpg-programming/apis-example-new-open-list-api-offe... 03-04-2014

APIs by Example: New Open List API Offers Enhanced Interface to History Log Page 3 of 10

of the API is suspended and that no other processing beyond the write buffer flush of the history log
is performed.

Once you've completed processing the last history log message returned for one QMHOLHST API
call, you can interrogate whether new log messages have arrived in the history log in the meantime
by repeating the flush call, followed by a regular call to the QMHOLHST API. For the new call to pick
up where you left off, specify the sent date and time from the last history log message received for the
starting date and time parameter on the API call.

The sixth API parameter defines the selection information providing the parameters used to
include—or exclude—certain history log messages from the returned log message list. The selection
information is specified in a data structure format containing the following information:

« start date and time

« end by date and time

« include or exclude specified message IDs indicator

« list of message IDs to either include in or exclude from the returned list
« include or exclude specified message types indicator

« list of message type to either include in or exclude from the returned list
» message severity limit

« list of qualified job names for which to return history log messages

The above selection criteria are all supported by the QMHOLHST API directly, meaning that only log
messages meeting the specified selection criteria are returned by the API. Due to its usefulness, I've
further added a selection criterion letting you select log messages sent by a specific current user
profile in the sending job. This criterion is therefore enforced by the DSPHSTLOG CPP while
processing the returned log message list. Note that for release 6.1, a maximum of 100 message IDs
can be specified to be either selected or omitted. At release 7.1, this maximum was increased to 200
message IDs.

The seventh QMHOLHST API parameter lets you tell the API which CCSID should be applied when
returning textual data and *CCHAR type message data to the API caller. Specifying a zero for this
parameter causes the API to return textual information as well as *CCHAR-type message data in the
CCSID of the job calling the API. Specifying a value of 65535 causes the mentioned data to be
returned in the CCSID in which it was created, meaning that no conversion is performed.

Further, there's an eighth parameter controlling the time zone used for both dates and times used as
input to the QMHOLHST API as well as the date and time values in log messages returned by the
API. Again, the API is in charge of the necessary conversion operation. You can specify the following
values for this parameter:

*SYS Local system value associated with the time zone is specified
by the time zone
system value

*UTC Coordinated Universal Time (UTC) wvalue.

*JOB Local job time value and the associated time zone is specified
by the job
attribute.
Time
zone Specifies the name of a time zone description (*TIMZON) object.

http://iprodeveloper.com/print/rpg-programming/apis-example-new-open-list-api-offe... 03-04-2014

APIs by Example: New Open List API Offers Enhanced Interface to History Log

Page 4 of 10

The final API parameter is the well-known API standard error data structure discussed in much
detail in earlier articles, so I leave that out of scope for this article.

To demonstrate the programming logic involved in building and retrieving the list returned by an
open list API, I've extracted code snippets from the DSPHSTLOG command's UIM list exit program
and adapted it a little to reflect mainly the core steps performed in such an operation:

**-— Receiver variable record structure:
D HSTLO100 Ds 32767 Qualified Based(pHSTL0100
D EntLen 101
D MsgSev 101
D MsgId Ta
**-— Global constants:
D BLD_SYNCH C -1
D MAX ENT C 999999
**-— List information:
D LstInf Ds Qualified
D RcdNbrTot 101
D RcdNbrRtn 101
D Handle 4a
D RcdLen 101
D InfSts la
D Dts 13a
D LstSts la
D la
D Inflen 101
D Rcdl 101
D 40a
/Free
a. LstApi.RtnRcdNbr = 1;
LstApi.LstRcdNbr = *Zero;
b. LstHstLog (RcvVar
: %Size(RcvVar
"HSTL0100"'
LstInf
BLD SYNCH
S1ltInf
JOB_CCSID
PrmRcd.TimZon
: ERRC0100
);
C. If ERRC0100.BytAvl = *Zero And LstInf.RcdNbrRtn > *Zero;
ExSr PrcLstEnt;
EndIf;
BegSr PrcLoglst;

)

http://iprodeveloper.com/print/rpg-programming/apis-example-new-open-list-api-offe... 03-04-2014

APIs by Example: New Open List API Offers Enhanced Interface to History Log

d. If LstApi.RtnRcdNbr > *Zero;
LstApi.CurRcdNbr = *Zero;

DoW LstInf.RcdNbrTot > LstApi.RtnRcdNbr;

LstApi.RtnRcdNbr += 1;

GetOplEnt (RcvVar
: %Size(RcvVar)
LstInf.Handle
LstInf
MAX ENT
LstApi.RtnRcdNbr
: ERRC0100
)
If ERRC0100.BytAvl > *Zero;
Leave;

EndIf;

ExSr PrcLstEnt;

EndDo;
EndIf;
EndSr;
e. BegSr PrcLstEnt;
f. pHSTLO0100 = %Addr (RcvVar);
g. For Idx = 1 To LstInf.RcdNbrRtn;

LstApi.LstRcdNbr += 1;

process list entry

h. If TIdx

The process outlined in the above code snippets
explanation below:

a) The record number to be returned is set

maps to the

to 1, i.e.,

Page 5 of 10

the first re

http://iprodeveloper.com/print/rpg-programming/apis-example-new-open-list-api-offe... 03-04-2014

APIs by Example: New Open List API Offers Enhanced Interface to History Log Page 6 of 10

b) The QMHOLHST API is called, requesting the list to be built sync

c) If the API call is successful and at least one record is returne

processed in e).

d) If more records are available in the list than were returned in
the Get List Entry API (QGYGTLE) is called to retrieve the remai
which are then processed in e). The QGYGTLE API call is repeatec

list records have been retrieved.

e) The API return format data structure's address is set to the loc

first list record returned.

f) FEach list entry returned is processed.

g) If more list entries are available, the return format data struc

is moved to the next entry's location. Otherwise processing cont

< >

The Open List API's ability to return as many records as fit into a large API receiver variable
significantly reduces the number of API calls needed to retrieve the complete list, and thereby of
course is speeding up the history log processing proportionally. Anyway, translating all the
QMHOLHST API parameters explained earlier into a CL. command interface in turn equates to the
following DSPHSTLOG prompt:

Display History Log (DSPHSTLOG)

Type choices, press Enter.

http://iprodeveloper.com/print/rpg-programming/apis-example-new-open-list-api-offe... 03-04-2014

APIs by Example: New Open List API Offers Enhanced Interface to History Log

Time period for log output:

Start time and date:

Beginning time *AVAIL
Beginning date *CURRENT
*BEGIN

End time and date:

Ending time *AVAIL
Ending date *CURRENT
*END

Message selection:

Selection indicator *ALL
*OMIT
Message identifier

+ for more values

Type selection:

Selection indicator *ALL
*OMIT
Message type
*DIAG...
+ for more values

Severity code filter *ALL
Current user profile *ALL
Jobs to display *ALL
User

Number

+ for more values

Time zone« . . . *JOB
*UTC
Output *

Page 7 of 10

Time, *AVAIL

Date, *CURRENT,

Time, *AVAIL

Date, *CURRENT,

*ALL, *INCLUDE,

Name

*ALL, *INCLUDE,

*COMP, *COPY,

0-99, *ALL
Name, *ALL
Name, *ALL
Name

000000-999999

Name, *JOB, *SYS,

* *PRINT

http://iprodeveloper.com/print/rpg-programming/apis-example-new-open-list-api-offe... 03-04-2014

APIs by Example: New Open List API Offers Enhanced Interface to History Log Page 8 of 10

As you'll note, apart from displaying the resulting output in a list panel, you can direct the output to a
printed list. All DSPHSTLOG command parameters are further explained in the accompanying help
text panel group. To produce an example of the DSPHSTLOG command's list panel, I ran the
following command on my system:

DSPHSTLOG PERIOD((*AVAIL 150611) (*AVAIL *CURRENT))

The above command returned the history log list displayed below. You'll note that the list is similar
to the one produced by the system's own DSPLOG command, when initially displayed:

Display History Log
WYNDHAMW
16-06-11
08:59:58
Message

Job 063852/0Q0PM400/Q1PDR started on 15-06-11 at 00:00:00 in
subsystem QSYSWRK i

Job 063853/QPM400/Q1PPMSUB started on 15-06-11 at 00:00:00 in
subsystem QSYSWR

Job 061867/QTMHHTTP/QHTTP ended on 15-06-11 at 00:00:02; 0,033
seconds used; e

Job 063854/Q0SYS/QYMEARCPMA started on 15-06-11 at 00:00:03 in
subsystem QSYSWR

Job 063855/QSYS/QYMEPFRCVT started on 15-06-11 at 00:00:03 in
subsystem QSYSWR

Job 063853/QPM400/Q1PPMSUB ended on 15-06-11 at 00:00:04; 0,028
seconds used;

Job 063856/QSYS/CRTPFRDTA started on 15-06-11 at 00:00:04 in
subsystem QSYSWRK

Job 063857/QSYS/QPMHDWRC started on 15-06-11 at 00:00:06 in
subsystem QSYSWRK

Job 063854/QSYS/QYMEARCPMA ended on 15-06-11 at 00:00:07; 0,318
seconds used;

Job 063855/QSYS/QYMEPFRCVT ended on 15-06-11 at 00:00:08; 0,597
seconds used;

Job 063858/QTMHHTTP/QHTTP started on 15-06-11 at 00:00:08 in
subsystem QSYSWRK

Job 063859/Q0SYS/QPMRSYSCMD started on 15-06-11 at 00:00:08 in
subsystem QSYSWR

Job 061866/QSYS/CRTPFRDTA ended on 15-06-11 at 00:00:11; 2,556
seconds used; e

Job 063859/0Q0SYS/QPMRSYSCMD ended on 15-06-11 at 00:00:14; 0,103
seconds used;

Job 063852/QPM400/Q1PDR ended on 15-06-11 at 00:00:16; 2,421
seconds used; end

Job 063860/VSIOWNER/RMTJRNMON started on 15-06-11 at 00:00:17 in
subsystem OMS

Job 063860/VSIOWNER/RMTJRNMON ended on 15-06-11 at 00:00:17; 0,017
seconds use

Job 063861/VSIOWNER/OMSBLDCST started on 15-06-11 at 00:00:17 in
subsystem OMS

http://iprodeveloper.com/print/rpg-programming/apis-example-new-open-list-api-offe... 03-04-2014

APIs by Example: New Open List API Offers Enhanced Interface to History Log Page 9 of 10

More. ..
F3=Exit Fll=View 2 Fl2=Cancel Fl7=Top F18=Bottom

I've added system date, time, and name information to the panel's header section, and also a few
function keys that let you navigate to the top and the bottom of the list, as well as toggle between the
above view and a new one that exposes a range of history log message details otherwise available only
when looking up this information individually for each message. In the native DSPLOG command's
list panel, the latter is done by using a combination of cursor location and function key F1. Here's
how the new alternate view appears on the Display History Log list panel:

Display History Log
WYNDHAMW
16-06-11

08:59:58

Msg ID Sev Type From job Number User Date Time

CPF1124 00 *INFO Q1PDR 063852 QPM400 15-06-11
00:00:00,771566

CPF1124 00 *INFO Q1PPMSUB 063853 QPM400 15-06-11
00:00:00,800297

CPFl1l64 00 *COMP QHTTP 061867 QTMHHTTP 15-06-11
00:00:02,091363

CPF1124 00 *INFO QYMEARCPMA 063854 QSYS 15-06-11
00:00:03,789902

CPF1124 00 *INFO QYMEPFRCVT 063855 QSYS 15-06-11
00:00:03,887443

CPFl1l64 00 *COMP Q1PPMSUB 063853 QPM400 15-06-11
00:00:04,181396

CPF1124 00 *INFO CRTPFRDTA 063856 QSYS 15-06-11
00:00:04,239252

CPF1124 00 *INFO QPMHDWRC 063857 QSYS 15-06-11
00:00:06,593122

CPFll64 00 *COMP QYMEARCPMA 063854 QSYS 15-06-11
00:00:07,506893

CPFl1l64 00 *COMP QYMEPFRCVT 063855 QSYS 15-06-11
00:00:08,114219

CPF1124 00 *INFO QHTTP 063858 QTMHHTTP 15-06-11
00:00:08,170259

CPF1124 00 *INFO QPMRSYSCMD 063859 QSYS 15-06-11
00:00:08,496378

CPFl1l64 00 *COMP CRTPFRDTA 061866 QSYS 15-06-11
00:00:11,735984

CPFl1l64 00 *COMP QPMRSYSCMD 063859 QSYS 15-06-11
00:00:14,980942

CPF1164 00 *COMP Q1PDR 063852 QPM400 15-06-11
00:00:16,914267

CPF1124 00 *INFO RMTJRNMON 063860 VSIOWNER 15-06-11
00:00:17,1079438

CPFl1l64 00 *COMP RMTJRNMON 063860 VSIOWNER 15-06-11
00:00:17,114010

http://iprodeveloper.com/print/rpg-programming/apis-example-new-open-list-api-offe... 03-04-2014

APIs by Example: New Open List API Offers Enhanced Interface to History Log Page 10 of 10

00:00:17,370145

More. ..
F3=Exit Fll=View

CPF1124 00 *INFO OMSBLDCST

1 Fl2=Cancel

063861

F17=Top F18=Bottom

VSIOWNER 15-06-11

As always, all parts of the panel as well as the list columns are documented in the cursor-sensitive
help text activated by using function key F1. The DSPHSTLOG command at this point, however,
lacks the option of displaying all the information associated with an individual message, including
the second-level message text and full qualified sending job name, in a separate panel. I'll dive into
more details on this topic and add this missing feature in the next issue of APIs by Example.

This APIs by Example includes the following sources:

CBX233 -- RPGLE --
CBX233H -- PNLGRP --
CBX233L -- RPGLE --
CBX233P -- PNLGRP --
CBX233X -- CMD --
CBX233M -- CLP --

Display
Display
Display
Display
Display

Display

History
History
History
History
History

History

Log
Log
Log
Log
Log

Log

CCP

Help

UIM List Exit Program
Panel Group

Build command

To create all these objects, compile and run the CBX233M program, following the instructions in the
source header. You'll also find compilation instructions in the respective source headers.

IBM Documentation:

Process Open List APIs

QHST history log

This article demonstrates the following APIs:

Open List of History Log Messages (QMHOLHST) API

Get List Entries (QGYGTLE) API

Close List (QGYCLST) API

Retrieve the source code for this API example.

Source URL: http://iprodeveloper.com/r

-programming/apis-example-new-open-list-api-offers-

enhanced-interface-history-log

http://iprodeveloper.com/print/rpg-programming/apis-example-new-open-list-api-offe... 03-04-2014

