4/4/2014 DB2 Data Protection: Options and Essentials

B print | close

DB2 Data Protection: Options and Essentials

SystemiNEWS Magazine
Kent Milligan Terry Ford

Kent Milligan
Sat, 11/01/2008 (All day)

Today, we all regularly hear about data breachesin the news. In fact, almost 250 million data recordshave
been compromised in 1,000 incidents since 2005. Forrester Research estimates that the cost toremediate a data
breach is $90 to $305 per exposed record. Clearly, such breaches are costly both tothe individuals and tothe
companiesinvolved. Even the fortress we all know as DB2 isvulnerable, solet's explore the technologies and
techniques available tosecure your databases on IBM i.

Data = Asset

Many people view "data"asjust the input and output for programs or the information used to generate reports.
If there is a cost toremediate a data breach, however, data must have value and thusis nolonger just
information but an asset. Indeed, the IBM Data Governance Council recently predicted that data will become an
asset on the balance sheet and that data governance will become a statutory requirement for companies. If this
istrue, the way IT thinks of data security needs tochange. Companies must nolonger trivialize the effort to
secure assets, but rather recognize that securing information assets is a cost of doing business.

Security Fundamentals

Before we review database security techniques, we need to discuss two fundamental steps in securing
information assets. First and most important is the definition of a company's security policy. Without a policy,
there is no definition of what is acceptable practice for using, accessing, and storing information by who, what,
when, where, and how. A policy should minimally address three things: confidentiality, integrity, and
availability. The monitoring and assessment of adherence tothe security policy determines whether your
security strategy is working. Often, IBM consultants are asked to perform security assessments for companies
without regard to policy. Although such an assessment can be useful for observing how the system is currently
defined and how data is being accessed, it cannot determine the level of security, because without a policy, it
really isn't an assessment so much as a baseline for monitoring and capturing the changesin the security
settings. A security policy is what defines whether the system and its settings are secure (or not). A word of
caution: The Health Insurance Portability and Accountability Act of 1996 (HIPAA), the Payment Card Industry
Data Security Standard (PCIDSS), and other industry compliance requirements may require controls that
override a company's security policy. You should therefore remain aware of industry and government
regulations and adjust your policy accordingly.

The second fundamental in securing data assetsis the use of resource security. Properly implemented resource
security prevents data breaches from both internal and external intrusions. Resource security controls are
closely tied tothe part of the security policy that defines who should have accesstowhat information resources.
Hackers may be good enough to get through your company's firewalls and sift their way through toyour

sy stem, but if they don't have explicit access toyour database, they can't compromise your information assets.

Your eyes are now open tothe importance of securing information assets. Let's examine the methods available
for securing database resources on IBM i.

Current State of i Security — the Default Is Insufficient

Because of IBM i's inherently secure nature, many customers rely on the default system settings to "protect”
their business data stored in DB2 for i. In most cases, this meansno data protection because all usershave
*CHANGE authority tothe data. Even more disturbing isthat many IBM i customers remain in this state,
despite the news headlines and the significant costs involved with databases being compromised. This default
security configuration makes implementing basic security policies challenging. A tighter implementation is

http://iprodeveloper.com/print/security/db2-data- protection-options-and-essentials 1/9

4/4/2014 DB2 Data Protection: Options and Essentials

required if you truly want to protect one of your company's most valuable assets — its data.

Traditionally, IBM i applications have employed menu-based security to counteract this default configuration
that gives all usersaccess tothe data. The theory isthat data is protected by the menu options that control
which database operations the user can perform. This approach is ineffective — even if the user profile has been
restricted from executing interactive commands. The reason is that in today's connected world, there are a
multitude of interfaces into the system, from browsers to PC clients, that completely by pass application menus.
If no object-level controls exist, users of these newer interfaces have an open door toyour data.

Some customers who use this default configuration have toughened their database security with exit point
solutions from third-party vendors. IBM i exit points allow a user-written program to be called every time a
particular interface (e.g., FTP) is used or a specific event occurs (e.g., profile created). Security tools based on
these exit pointsincrease the level of security on a system by locking down interfaces not under the control of
menu-based or application authority. In addition, exit point solutions let customersimplement more granular
security controls, such as allowing users access tothe database only during certain hours of the day.

Although exit point solutions can provide great benefits, they are not an alternative to object-level control of
your databases. Exit point solutions help secure interfaces, but they don't completely protect the data stored in
your DB2 objects. Exit points do not exist for every data accessinterface on the system. Thus, if an application
starts using an unprotected interface, the only thing protecting your data is object-level access control. When
your security implementation totally relies on exit points, you must also track new data interfaces that pop up
as IBM delivers new releases and products. By doing so, you can ensure that your exit point solution provides
coverage for the new interfaces.

An exit point solution is a good option for databases with security holes caused by a reliance on the default
security setup or menu-based control. However, your security work shouldn't stop there. Instead, you need to
continue towork on a complete database security solution by controlling data access at the object level.

DB2 Security Approaches

Now that you understand why object-level controls are needed, let's look at the approaches commonly used to
implement a security policy. In the IBM i camp, the main methodologies are to use the program-adopted
authority model or define private authorities on each object.

The Adoption Approach to DB2 Security

Program adopted authority can simplify your security implementation by reducing the number of user profiles
that must be granted access to DB2 objects. Because of the low number of individual authorities, this security
model is the most efficient for the IBM i built-in security manager to enforce. With this method, public access to
the DB2 objects is turned off by specifying *EXCLUDE for PUBLIC authority, and then the only user with access
rights tothe object is the user profile that owns the program.

When a program isrunning on the system and references DB2 objects, the default behavior is for the job's user
profile tobe validated against the security controlsin place for the referenced object. For example, if APPUSER1
is the user profile running program WORKAPP, any time WORKAPP tries to access a DB2 object, the security
manager checks whether the APPUSER1 user profile has the necessary authority to perform the requested
operation on that DB2 object.

With program adopted authority, you can create (or change) the program touse the authority of the owner of
the program. To do so, specify a parameter of USRPRF(*OWNER) on the Create Program (CRTPGM) or Change
Program (CHGPGM) commands, as Figure 1 demonstrates.

In the example in Figure 1, let'sassume that PRFWRKAPP is the profile that owns the program object. Now,
APPUSER1 starts a session and runs the WORKAPP program. With adopted authority in place, every time
WORKAPP references a DB2 object, the privileges for both the APPUSER1 and PRFWRKAPP user profiles are
checked to determine whether the program is authorized to perform the specified database operation.

In addition tochanging the program to adopt the owner authority, some data authorities need tobe given tothe
program owner. With program adopted authority, typically only the object owner user profile is given access to
the DB2 objects, and public access is restricted with *EXCLUDE authority. Furthermore, the application users
need *EXECUTE authority on the program object. Figure 2 contains an example of commands that you would

http://iprodeveloper.com/print/security/db2-data- protection-options-and-essentials

4/4/2014 DB2 Data Protection: Options and Essentials

need to combine with the commands in Figure 1 to complete the program adopted authority setup. This
example assumes that WORKTAB is the only DB2 object that the application accesses.

This adopted authority example should demonstrate how using the adopted authority model can simplify your
database security setup. Instead of granting access tothe WORKTAB table to every user of the application, only
the program owner (PRFWRKAPP) needs privileges tochange and read the WORKTAB table.

Program adopted authority sounds asifit's tied tolegacy AS/400 technology, soyou may be wondering
whether you can use this approach with newer technologies, such as Java and SQL. The answer is yes. When
SQLis embedded in programs, the SQL precompilers let y ou specify *OWNER for the USRPRF (User Profile) and
DYNUSRPRF (Dynamic User Profile) parameters. The same options exist on the SET OPTION clause for SQL
procedures, triggers, and functions.

Java applications aren't associated with IBM i program objects, so of course there's no program object that you
can alter. For these ty pes of situations, applications can use the swap profile API set to emulate the adopted
authority model. The swap profile API set consists of Get Profile Handle (QSYGETPH), Set Profile (QWTSETP),
and Release Profile Handle (QSYRLSPH). The swap profile API set is executed at the beginning of the application
toswitch from the user profile running the application to a user profile that has the database authorizations the
application requires.

When the application finishes running, the swap profile API set is used torelease the swapped user profile and
switch back tothe original user profile. This technique is similar tothe processing of program adopted
authority: After the program call completes, the user running the application reverts tothe authorizations
rights that his or her user profile holds.

Thus far, we've discussed only the advantages of the adopted authority model. Now let's look at the
disadvantages of the adopted authority approach. One drawback is the exposure that exists if the program
running with adopted authority presentsthe application user with a command line. For example, maybe the
WORKAPP application provides printing capabilitiesand a menu option that takes the user tothe Work with
Spooled Files (WRKSPLF) interface. A command line is present on the WRKSPLF interface. Any operations that
APPUSER1 executes from that command line interface alsoinclude the new authorizations added with the
adopted authority (PRFWRKAPP). The application user is free to use these adopted authorities from the
command line in any manner that he or she chooses. To minimize this risk, you can use the USEADPAUT
parameter on the CHGPGM command. Clearly, however, the implementation of program adopted authority
needs careful planning toeliminate the ability for the application user touse the adopted authorities outside of
the application.

The program adopted authority model also requires the ability toalter the program object attributes or the
program code itself, but if you're using IBM or third-party programs, you can't make these kinds of alterations.
Consider the scenarioin which a business analy st wants to create a report by using Query /400 or IBM DB2 Web
Query for i. In this case, extra programming is necessary to make the adopted authority approach work. For
example, you could write a wrapper CL program that adopts the necessary authority for the Query /400 report
towork. DB2 Web Query can query a result set returned from a stored procedure call, so you could code a stored
procedure that adopts authority. Does your IT staff have enough resourcesto create a program for every report?
What if it's impossible to create a wrapper for the third-party tools such as Sy stem i Navigator? You have to
research and investigate third-party software and database interfaces outside of your company's application
before depending too much on adopted authority to protect your DB2 databases.

The Private Authority Approach to DB2 Security

The private authority approach really amountstorolling up your sleeves to perform the hard work of
analyzing and securing each DB2 object on the system with the proper authorities. Instead of defining access
rights for each user profile on the sy stem, you can use group profiles and authorization lists in IBM i to reduce
the number of security privilegesthat you must grant. This private authority approach probably already
sounds like too much work. However, if you and your company view the data stored in your DB2 databases as
one of the organization's most valuable business assets, it's easy tojustify the effort tosecure them effectively.

This private authority approach hasthe advantage of delivering a security implementation that is difficult to
breach —even asnew interfaces and applications are introduced over time. The reason the security is so
effective isthat you're securing the database objects themselves instead of just the programs or interfaces. As we

http://iprodeveloper.com/print/security/db2-data- protection-options-and-essentials 39

4/4/2014 DB2 Data Protection: Options and Essentials

mentioned, the challenge with this approach isthe time involved in defining and managing all the private
authorities for each DB2 object. A small performance degradation also occurs with this methodology because
there are more individual authorities for the IBM i security manager to process and validate. The performance
impact will depend on a number of factors, including the number of objects and the number of authorities.

To simplify the administration of database security policy on DB2 for i, you can use group profiles and
authorization lists. First let's explain group profiles. IBM i user profiles can belong to one or more groups. With
this feature, you can grant authorities toa group of users instead of having to define authorities for each user
profile. For example, there may be one group profile for your sales database (GPSales) and another group profile
for the payroll database (GPPay). You add individual user profiles to these groups and then grant authority on
the database object tothe group profiles. Group profiles are often based on department or business role (e.g., help
desk, teller).

Figure 3 shows an example of an implementation that uses a group profile setup. Notice in the example that
there'snocommand to create a group profile. Instead, a user profile is implicitly transformed into a group
profile when that user profile is referenced on the group profile parameters (i.e., Group Profile — GRPPRF and
Supplement Group Profile — SUPGRPPRF) on the CRTUSRPRF or CHGUSRPRF commands. Ty pically, a group
profile is created with PASSWORD(*NONE), as in this example, sothat noindividual user can use the group
profile to sign on.

Notice in the example that APPUSER3 belongs to both group profiles. A user profile can belong toup to16 group
profiles. Group profiles can't belong to other groups. The first group must alway s be specified on the GRPPRF
parameter and additional groups on the SUPGRPPRF parameter. The main difference between these two group
parametersisthat the OWNER, GRPAUT, and GRPAUTTYP parameter values for the individual user profile
apply only tothe group profile specified on the GRPPRF parameter. These parameters control how object
ownership is assigned when a user profile belonging toa group creates an object.

The IBM i security manager doesn't add together the individual and group profile authorities when determining
whether the user profile is authorized to perform a database operation. The security manager examines the
credentials for a user and group profile separately. When you use group profiles, it's usually best for individual
user profiles to have no authorities (even *EXCLUDE) to the DB2 objects, with object authorities granted to the
group user profile asin Figure 3. Another tip for group profile implementation is to use the Change Object
Primary Group (CHGOBJPGP) command, which Figure 4 shows, toimprove performance. This command
improves performance by storing information about the specified group profile's authority in the table object
itself.

Authorization lists are another way you can simplify the management of private authorities, and you use them
similarly tothe way you use group profiles. Authorization lists provide a way to group objects that have
comparable security requirements. For example, a data warehouse contains several tables that include
historical sales data for business analysts to explore. In this case, each business analyst using the data
warehouse needs access to each table. Instead of granting private authorities on each table, you can create an
authorization list that effectively provides users with the necessary authority to each table associated with the
authorization list.

Think of an authorization list as containing a list of user profiles and the authority that each user has for the
DB2 objects associated with the authorization list. Figure 5 shows an authorization list in action. The first step is
creating the authorization list object with the Create Authorization List (CRTAUTL) command. The
AUTHORITY parameter on the CRTAUTL command isn't the authority that each user profile hastothe DB2
objects associated with the list. If an associated DB2 object has *AUTL for its public authority setting, the
AUTHORITY parameter value (*EXCLUDE in this case) from the authorization list is used as the public
authority setting of the DB2 object. The next step is putting the database object under the security control of an
authorization list. This is done with the GRTOBJAUT command. An IBM i object can be associated with only one
authorization list at a time.

The final step involves giving users the authority tothe authorization list. After this step the user profileshave
the specified authority to any object the authorization list secures. You perform this step with the Add
Authorization List Entry (ADDAUTLE) command — no SQL statements to do this task exist. In this example, the
first twousers are given *USE authority tothe DB2 objects secured by the list, and the last administrator user is
given *CHANGE authority. The result is that users BIZUSER1 and BIZUSER2 have *USE authority for any DB2

http://iprodeveloper.com/print/security/db2-data- protection-options-and-essentials 4/9

4/4/2014 DB2 Data Protection: Options and Essentials
object associated with the authorization list, whereas DWADMIN user profile has *CHANGE capabilities.

A key concept tounderstand is that user authority is defined for the authorization list, not for the individual
objects secured by the list. If a new DB2 object is secured by the authorization list, the users on the list
automatically gain authority tothe object. This behavior makes it easy to secure new objects with security
requirementsthat are the same as existing objects in your database.

When you secure a DB2 table with an authorization list, you can change authorities even when the table is
open. With group and individual user profiles, you can't grant or revoke authorities from an open object. This
fact may lead you to question whether an authorization list is better than a group profile. The answer is that
neither is better. The choice of which technique to use really boils down to which option best solves your
problem. In fact, you can add a group profile toan authorization list in the same way that you add an
individual user profile. Many shops use these two options together.

Aswith program adopted authority, a security implementation that uses the private authority approach
should involve reducing the public authority to *EXCLUDE if at all possible. Excluding all users from accessing
a DB2 object is much safer than leaving the door open toyour DB2 object by default. It might also be possible to
use a combination of adopted authority and private authorities toreduce the database security administration,
with private authorities being employed only to address the interfaces not easily supported by adopted
authority.

Although a private authority implementation requires more time toimplement and manage, it delivers
security defensesthat protect your data across all interfaces. This protection includes interfaces that exist today
and those delivered in the future. With this understanding of the two basic approaches to DB2 security, let's
review more detailed security considerations for the interfaces and objects in your database.

Connection- and Interface-Level Controls

Securing your database at the interface level was an option that we touched on earlier during the discussion of
exit point programs. Exit point-based solutions dolet y ou disable or limit user database access from data
interfaces such as ODBC and FTP connections. However, complete protection is impossible with these solutions
because exit points don't exist for all data access interfaces.

Even if the database is secured at the object level with private authorities, you must consider the business data
being transmitted over the network. Once a user has been authorized tothe data, database and interface
security controls offer no protection tothe data being transported in the clear across the network. Here are a few
of the options available on IBM i to protect your data transmissions:

Transport Layer Security (TLS)/Secure Sockets Layer (SSL). TLS and its predecessor SSL are technologies
that you can deploy to protect business data being transmitted over the network. TLS/SSL secures the data
transmission by encrypting the data. Extra system resources are needed to encrypt the data transmissions, but
IBM offers a cry ptographic card to offload the TLS/SSL encry ption processing from the main processors.

Secure Virtual Private Network (VPN). A Secure VPN uses cry ptographic protocols such as IP Security
(IPSec) to provide secure communications over unsecured networks. To provide the necessary data protection, a
VPN must be designed and implemented with clearly defined security policies.

Secure Shell (SSH)/OpenSSH. SSH is a network protocol that lets you securely transfer data between sy stems.
A wide variety of operating sy stems support this protocol.

Homegrown encryption. Applications can use IBM i cry ptography servicestoencrypt the data before sending
it over the network and have the target system decry pt the data. This approach requires substantial
programming resources toimplement the encryption/decry ption as well as extra administration toensure that
utilities such as FTP are accessing only encry pted objects.

Schema-Level Controls

You may think that you can simplify management of object-level access controls by just defining authorities at
the schema (library) level. A schema is a container for all DB2 objects, so controlling access tothe containing
object seems a logical way to control access to the objects within it. Unfortunately, thisis untrue because
schema-level controls offer insufficient granularities. A user profile needs a minimum of *USE authority to

http://iprodeveloper.com/print/security/db2-data- protection-options-and-essentials 59

4/4/2014 DB2 Data Protection: Options and Essentials

access any of the DB2 objects within a schema. The data authorities defined at the table or object level are then
used to determine whether a user can actually access the business data stored in a DB2 object. Hence, there are
nosecurity management shortcuts at the schema level — user profiles need to have authorities granted at both
the schema and the object level.

An SQLschema and IBMilibrary are equivalent objects; however, the default public authority given tothe
respective objects is different. With the Create Library (CRTLIB) command, the CRTAUT parameter controls the
default public authority. The default for this parameter is *SYSVAL, which means that the QCRTAUT sy stem
value determines the policy for public access. The system value default is *CHANGE, which is the reason for our
earlier statement about IBM i shops giving all users on their system *CHANGE access to their databases. To
remedy this problem, IBM recommends changing QCRTAUT to *EXCLUDE or *USE in most cases tolimit public
access toyour database objects. You will most likely need some changes toyour environment and programs to
accommodate the change tothe QCRTAUT system value.

The SQL Create Schema statement creates a library with a different public authority when SQL naming (*SQL)
isused. The naming format parameter is available on all SQL interfaces that enable either SQL or Sy stem
(*SYS) naming. If you use Sy stem naming, the public authority behavior follows the CRTLIB semantics. With
SQLnaming in effect, a library (and all SQL objects) is created with a public authority of *EXCLUDE. Thus, SQL
naming forces you to explicitly grant public access to the object or define private authorities. Again, this
behavior follows IBM's general guideline of excluding all public access to the schema by default.

Table-Level Controls

Although a user needs schema-level privilegesin order tochange or add data, table-level access controls are the
key tosecuring your business data. This detail is true whether the security implementation uses private
authorities or program-adopted authorities.

Object ownership is one aspect of data security that we haven't yet discussed. When a DB2 table (physical file) is
created, a user profile is assigned ownership of the object. The owner of a DB2 table can perform any operation
on that table. Obviously, you must carefully plan the access levels of the owners of each object in your database.

The way you assign object ownership depends on the interface y ou use. With non-SQL interfaces, you assign
ownership tothe user profile or group user profile of the job that creates the database object. With SQL
interfaces, you control the object ownership behavior by using the naming format parameter — just like public
authority. For DB2 tables that you create with system naming, assign object ownership in the same manner
that you do with non-SQL interfaces. When you create a table with SQL naming, the owner of the table is the
user profile with the same name asthe schema intowhich the object is created. For example, if you create table
TAB1 intoa schema named USER1, the object owner for TAB1 is USER1. When no user profile matchesthe name
of the schema, the owner of the object is the user or group profile of the job creating the table. Assigning object
ownership toa group profile is unwise because that lets every member of the group profile inherit ownership
authority of the created object.

Column- and Row-Level Controls

Some database security implementations give users no direct access tothe table. Instead, users have access only
toviews (i.e., logical files) defined over the tables. Because views can contain a subset of the columns (i.e., fields)
in a table, views can strengthen database security by letting columns containing sensitive data be hidden from
the user.

The example in Figure 6 uses SQL to demonstrate this security technique in action. You can alsoimplement the
technique by using logical files and the CL security commands. In this example, EMP_TAB is the DB2 table that
contains data on each employee. The first step is defining an SQL view, EMPVIEW, that omits the sensitive
salary column from its definition. Access tothe underlying table is then taken away with the REVOKE
statement, and "normal” users are given only data authorities tothe view with the GRANT statement. The
result isthat USER1 is authorized to access just the employee ID and name because those are the only columns
defined in the view.

We create a second view for those users in human resources (HR) who require access tothe salary column.
Notice that even the HR user profile has no privileges to access the table — accessis again limited to the view,
empview_hr. Asnew columns are added tothe underlying table, view users have to be explicitly granted access

http://iprodeveloper.com/print/security/db2-data- protection-options-and-essentials 6/9

4/4/2014 DB2 Data Protection: Options and Essentials

tothe data in the new columns instead of automatically giving all authorized table users accesstothe new
column.

Instead of hiding sensitive columns, you could also use views to mask data in sensitive columns, asin the
following example:

CREATE VIEW empview mask AS

In addition, if you need to restrict users to a subset of rows within a table, you could add selection
predicates to the view definition, as the following example demonstrates.

CREATE VIEW empview hrsub AS
SELECT empid, empname, empsalary
FROM emp_tab

WHERE empsalary < 1000000

The main downside tothe view approach is that creating additional views means that you have additional DB2
objectstomanage and administer. If you're using only SQL views and nonkeyed logical files, there's no
performance impact tothe applications, because these DB2 objects don't contain any data that hastobe
maintained as the underlying table changes. If you use a keyed logical file for this purpose, a slight performance
overhead will exist because DB2 hastoupdate the logical file each time the underlying table changes.

DB2 for i also supports the capability to define data authorities at the column level. However, people use this
support infrequently because they can control only update operations at the column level —no column-level
support exists for read operations. Being able to control updates at the column level can help in situationsin
which you need tolet users update some of the columns in a table, but not all of them. For example, in Figure 7,
the HRADMIN user profile is granted access to perform any data operation on any column in the emp_tab table.
In contrast, the HRUSER profile is limited toupdating the empid and empname columns and reading rows from
the table. Column-level security is supported only by the SQL GRANT and REVOKE statements.

Data Protection with Encryption

Curious about why we haven't mentioned data encry ption yet? The reason is that the encry ption offers
minimal protection if a database has not been secured first with object-level access controls. This is especially
trueifyou're using a solution in which the data is automatically encrypted on the way in and automatically
decry pted by the application each time the data is accessed — all authorized users are able to view the clear-text
version of the data. Your best security investment is getting your database secured at the object-level before
even considering encry ption, in part because a good encry ption implementation also requires an access control
scheme, which we discuss later in this article.

Because government legislation and auditors mandate that sensitive data stored on disk be encry pted, many
IBM i customers are looking for "automatic" encry ption schemes. This customer demand resulted in IBM
delivering auxiliary storage pool (ASP) encryption in IBMi 6.1. This support enables IBM i to automatically
encry pt data asit's written toa basic ASP or an independent ASP (IASP). When the operating system or an
application reads data read from an encrypted ASP, the data is automatically decrypted. This ty pe of

encry ption approach offers several advantages:

¢ aquick implementation method that satisfies the requirements of many security auditors
¢ data protection in the case of a drive theft
e data protection when a bad drive hastobe replaced and returned tothe vendor

The downside of automatic encry ption isthat the data is presented to all authorized sy stem usersin cleartext
form. Thus, it's not reducing the number of application users who can view your credit card number or Social
Security number. In addition, this approach requires the creation of an ASP as well as moving existing data into
the encrypted ASP. Toimplement ASP-level encry ption on your system, you must purchase and install the IBM
ilicensed program product 5761SS1 Option 45 - Encry pted ASP Enablement.

http://iprodeveloper.com/print/security/db2-data- protection-options-and-essentials 79

4/4/2014 DB2 Data Protection: Options and Essentials

A more secure encry ption solution involves selectively decrypting data. With this method, you must enhance
application solutions toexamine whois attempting toview a column that contains encry pted data and
determine whether that user is authorized to see the decry pted version of the data. The method is similar tothe
access controls necessary for securing databases at the object level. Ideally, applications would require a form of
user authentication, such as a password or a biometric reading, to determine whether the user hasthe
credentials needed to access encry pted data. In some cases, it may be more practical toremove sensitive data
from reports instead of worrying about how the data will be decrypted. At this point, it should be obvious that a
proper implementation will require a fair amount of coding changes toyour application and interfaces. In
addition, a system upgrade may be required tohandle the increased CPU demand that encry ption algorithms
impose.

Application-based encry ption also needs to securely handle the management of and access to encry ption keys
(for some good tips, see "Best Practices for Key Management"on page ProVIP 3). Once the data is encrypted, the
encry ption key is as valuable asthe decrypted version of the data. The encry ption key would preferably be
stored in a separate hardware device and retrieved programmatically to provide the most protection. IBM
delivered a set of key management APIsin V5R4 tohelp programmers protect and manage encry ption keys.
(For more information about key management APIs, as well as some downloadable utilities that help you put
them towork, see "APIs by Example: Cry ptographic Key Management," below.)

Keeping the encryption key separate from the encrypted data isan important design point for application-based
encry ption. This point is also true for encry pted backups of your database. Totruly protect y our backups with
encry ption, be sure to store the encryption key on different media from the encrypted data.

Even though encryption can add another layer of protection toyour database, you can see that a large amount
of work isinvolved in setting up a complete encry ption solution for your applications and databases. The
Redbook Protecting i5/0S Data with Encryption provides further details and considerations.

An Ongoing Endeavor

You should now have a good understanding of the technologies and techniques available to secure your
databases on IBM i. Asyou've seen, nosingle tool or single implementation of technology can make a business's
information assets secure. You must attend tothese data assets regularly and with diligence. Securing
information assetsis an ongoing task of planning, monitoring, and implementing — if you're committed to
keeping your data and your company out of the news.

Terry Ford started his IT career in 1982 as a programmer in local Illinois government designing municipal and
court applications. He started with IBM in 1988 as an SE in the field and later moved to the Rochester Lab. He has
spent the last 15 years in competitive analysis, in the Customer Benchmark Center, and in his current position as
security practice leader for STG Lab Services. Terry has authored several articles and w hite papers and holds a
patent on workload characterization.

Kent Milligan is a senior DB2 for i consultant on IBM's ISV Enablement team for IBM i. Kent spent the first
eight years of his IBM career as a member of the DB2 development group in Rochester. He speaks and writes
regularly about relational database topics.

APIs by Example: Cryptographic Key Management

The following articles written by Carsten Flensburg and published in the System iNetwork Programming Tips
email newsletter discuss and demonstrate key management with the Cryptographic Services APIs. They are
part of Flensburg'slong-running and well-received "APIs by Example" series.

e "APIsby Example: AES Encryption to Actual Field Length" (August 28, 2008, article ID57114)

¢ "APIs by Example: Cryptographic Key Management - Encry pt/Decry pt with Key Hierarchy" (April 24,
2008 article ID 56586)

¢ "APIsby Example: Cryptographic Key Management - Creating Data Key Stores and More" (March 27,
2008, article ID 56462)

e "APIsby Example: Cryptographic Key Management - Creating, Displaying, and Deleting Key Records"
(February 28, 2008, article ID 56351)

e "APIs by Example: Cryptographic Key Management - Creating and Translating Key Stores" (January 24,

http://iprodeveloper.com/print/security/db2-data- protection-options-and-essentials 8/9

4/4/2014 DB2 Data Protection: Options and Essentials

2008, articleID56187)

e "APIs by Example: Cryptographic Key Management - Testing and Clearing Master Keys" (December 13,
2007, article ID 56035)

e "APIsby Example: Cryptographic Key Management - Loading and Setting Master Keys" (November 8,
2007, article ID 55862)

Source URL: http://iprodev eloper.com /security /db2-data-protection-options-and-essentials

http://iprodeveloper.com/print/security/db2-data- protection-options-and-essentials 9/9

