
print | close

APIs by Example: Command Definition API and API XML
Output Processing

System iNetwork Programming Tips Newsletter

Carsten Flensburg

Carsten Flensburg

Thu, 12/09/2010 (All day)

The Retrieve Command Definition (QCDRCMDD) API is useful if you need to retrieve information

from a command object about the CL command definition statements required to create the

command object. Knowing that the API exists and what it's capable of, however, is only half the way

when it comes to taking advantage of the information returned by the QCDRCMDD API. The

QCDRCMDD API returns information in the form of either a return variable or a stream file. If you

settle for the return variable, your first challenge is to perform the conversion required to interpret

the UTF-8 Unicode character set used by the API to create the output information.

Opting for the stream file will help you overcome this issue, because the IFS stream file APIs

required to open and read the output file can perform character set conversion implicitly. You will,

however, need to write the code employing these APIs to make this approach work. Irrespective of

the output destination chosen, the next challenge is to parse the XML format used to structure and

organize the command definition information. Today's issue of APIs by Example takes a closer look

at the aforementioned programming challenges as well as introduces you to four new CL commands

that make it easier to get the job done.

As for the XML part of the equation, I've naturally taken advantage of the XML parsing functions, the

XML-INTO and XML-SAX opcodes, that have been added to RPG IV in recent releases. As luck

would have it, a number of useful articles covering this topic in much detail have been published,

also in the System iNetwork Programming Tips newsletter. If you need to brush up on RPG IV's

XML parsing capabilities, see the links to these articles at the end of this one.

The first thing I want to do is actually be able to create the XML command definition data. In order

to do so, I have to build the Retrieve Command XML Source (RTVCMDXML) CL command, which is

basically a front end to the QCDRCMDD API. Here's the RTVCMDXML command prompt:

 Retrieve Command XML Source (RTVCMDXML)

 Type choices, press Enter.

 Command Name

 Library *LIBL Name, *LIBL,

*CURLIB

Page 1 of 8APIs by Example: Command Definition API and API XML Output Processing

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-command-definition-a...

 Output file

 Format *FULL *BASIC, *FULL

The Retrieve Command XML Source (RTVCMDXML) command retrieves information from a CL

command (*CMD) object and generates XML source statements that describe the command. The

generated command information XML source is called Command Definition Markup Language or

CDML. The CDML source is stored in the stream file specified in UTF-8. UTF-8 (CCSID 1208) is a

Unicode format that resembles ASCII but allows the data to be stored compactly and shared easily

between IBM i systems and any other system that supports the UTF-8 format.

The CDML elements and attributes closely resemble the command definition statements used to

create CL commands:

1. CMD (Command) statement

2. PARM (Parameter) statement

3. ELEM (Element) statement

4. QUAL (Qualifier) statement

5. DEP (Dependency) statement

6. PMTCTL (Prompt Control) statement

IBM in addition supplies a Document Type Definition (DTD) specification located in the IFS

path /QIBM/XML/DTD/QcdCLCmd.dtd for the definition of the CDML tag language returned by the

QCDRCMDD API. Run the following command to display the content of the QcdCLCmd.dtd file:

 DSPF STMF('/QIBM/XML/DTD/QcdCLCmd.dtd')

As input to the RTVCMDXML command, you specify the qualified name of the command for which

to retrieve the command definition information as well as a path identifying the stream file to receive

the API output. The final command parameter defines the specification level of the returned

command information. Format *BASIC returns CDML source that describes the CL command

information needed to build a valid command string for the command, and format *FULL returns

CDML source that describes all the command definition statements used to create the command. The

latter is a superset of the information returned by the former.

To create a stream file named rtvobjd.xml in directory QOpenSys containing XML formatted

command definition statements for the Display Object Description (DSPOBJD) command, you'd run

the following command:

 RTVCMDXML CMD(DSPOBJD) OUTFILE('/Qopensys/dspobjd.xml')

To inspect the resultant stream file, you can use your preferred XML editor. If you don't have such a

tool readily available, you can download a copy of the freeware XML editor called XML Marker. I've

included a Google query locating the download area for this tool at the end of this article. If you want

to make the retrieved command information available in a program, you have a number of options

Page 2 of 8APIs by Example: Command Definition API and API XML Output Processing

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-command-definition-a...

available. As far as native RPG IV options are concerned, you'd be looking at employing either the

XML-SAX or XML-INTO opcode.

Irrespective of the option chosen, you'd need to work with XML data in order to identify the

structure of the XML data as well as the XML elements and attributes and their respective values.

This information is crucial whether you want to map the XML document to one or more data

structures as supported by the XML-INTO opcode or you decide to capture the XML document

content in an XML handler being registered for either the XML-INTO or XML-SAX opcode. As I

mentioned, you'll find the details of both approaches discussed in the articles previously published,

so I'll leave that part out of scope for now.

However, one of these articles, "RPG's XML-SAX Opcode," by Scott Klement, includes a couple of

programs illustrating the XML events and XML content paths involved in processing arbitrary XML

data. The program sources are named PrintXml.rpgle and ShowEvents.rpgle in the accompanying

zip-file. I've been using Scott's programs whenever I need to quickly get an overview of or analyze

XML documents in more detail. At one point, I therefore decided to add a command interface to

those two programs in order to make it faster and even more convenient to establish the structure

and element and attribute values of any given XML-document.

One of the commands is called List XML Document Events (LSTXMLEVT):

 List XML Document Events (LSTXMLEVT)

 Type choices, press Enter.

 XML document

The List XML document events (LSTXMLEVT) command documents the events that occur as the

specified XML document is being processed by the XML-SAX operation code in RPG IV. The

produced list is printed with your job's spooled output. The other command is called List XML

Document Content Path (LSTXMLCNTP):

 List XML Document Content Path (LSTXMLCNTP)

 Type choices, press Enter.

 XML document

Page 3 of 8APIs by Example: Command Definition API and API XML Output Processing

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-command-definition-a...

The LSTXMLCNTP command tracks the position and path of all XML elements in the specified XML

document and prints this information together with the data values associated with each element.

For more details on the output produced by both commands, refer to Scott's article, which

thoroughly explains the basics of resolving an XML document into XML events as well as XML

element and attribute paths.

Anyway, once you've completed the investigation of the XML document structure, you should be able

to make an educated decision about the XML parsing options to choose and be armed with the

information necessary to identify the element and attribute values to extract. As an example of how

this knowledge could then be put into action, I've created the List Command Parameter Info

(LSTCMDPRMI) CL command:

 List Command Parameter Info (LSTCMDPRMI)

 Type choices, press Enter.

 Command Name

 Library *LIBL Name, *LIBL,

*CURLIB

The LSTCMDPRMI command produces a printed list containing information such as keyword, type,

return value, length, default value, and prompt text about each parameter associated with the

specified command name. Below, you'll find an excerpt of the list produced for the Create RPG

Module (CRTRPGMOD) command:

12/06/10 16:18:08 System: NOVASTAR Command

Parameter Information

Command name : CRTRPGMOD

 Library : QSYS

Keyword Type Rtn value Length Min Max Dft value

Prompt text

CMDFLAG CHAR 32 0

MODULE QUAL NO 0 1

Module

 NAME 10 0 1 *CTLSPEC

Page 4 of 8APIs by Example: Command Definition API and API XML Output Processing

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-command-definition-a...

 NAME 10 0 1 *CURLIB

Library

SRCFILE QUAL NO 0 1

Source file

 NAME 10 0 1 QRPGLESRC

 NAME 10 0 1 *LIBL

Library

SRCMBR NAME NO 10 0 1 *MODULE

Source member

SRCSTMF PNAME NO 5000 0 1

Source stream file

GENLVL INT2 NO 0 1 10

 Generation severity level

TEXT CHAR NO 50 0 1 *SRCMBRTXT

 Text 'description'

OPTION INT2 NO 0 20

 Compiler options

DBGVIEW INT2 NO 0 1 *STMT

Debugging views

OUTPUT CHAR NO 1 0 1 *PRINT

 Output

OPTIMIZE INT2 NO 0 1 *NONE

Optimization level

Looking at the LSTCMDPRMI command processing program CBX2213 reveals that, following the

QCDRCMDD API call and subsequent conversion of the returned command information, the parsing

of the XML data is performed in the statement below:

 /Free

 Xml-Sax %Handler(XmlHandler: ComVar) %Xml(XmlStr:

'doc=string');

 /End-Free

The statement in essence declares the XML data to be processed to be located in the XmlStr variable

and that the subprocedure to be called for each XML parsing event is named XmlHandler. Again, the

mechanics and interface of an XML handler are documented and explained in the XML-SAX and

XML-INTO articles I mentioned earlier, but basically the code in the XmlHandler subprocedure will

be responsible for identifying and retrieving the XML elements and attributes being passed to it. If

you want to see how to code for this and verify how it works, I suggest you use your favorite source

debugger against the CBX2213 CPP and add break points in the XmlHandler subprocedure to ensure

that the execution of this is captured in the debugger during execution of the LSTCMDPRMI

command.

The LSTCMDPRMI command uses the QCDRCMDD API return variable destination option and

consequently handles the data conversion of the command XML information returned by the API

from Unicode UTF-8 to the current job's Coded character set identifier (CCSID). This conversion is

Page 5 of 8APIs by Example: Command Definition API and API XML Output Processing

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-command-definition-a...

performed by the iconv() Code Conversion APIs. Initially I had planned to use Convert a Graphic

Character String (QTQCVRT) API for this purpose because this single API call approach is a bit

simpler to implement as opposed to the three API calls required by the iconv() method.

It quickly turned out, however, that the XML-formatted API output exceeded the string length

constraint of 32767 bytes of the QTQCVRT API. For smaller strings and minor volume data

conversion requirements, the QTQCVRT API is a convenient alternative to the slightly more complex

iconv() functions, so I've included a version of the LSTCMDPRMI CPP using the QTQCVRT API to

let me demonstrate the somewhat special Feedback (FB) error-handling process employed by this

API.

The QTQCVRT API reports any error condition in an array of three 32-bit two's complement binary

values (12 bytes). The status code is a non-negative number in the first 16 bits, and the reason code is

a non-negative number in the second 16 bits. The specific meanings of the status code and associated

reason code values are documented in a table included at the end of the QTQCVRT API

documentation. The CPFA33F message ID in message file QCPFMSG can be used to format and

return error information to the API caller, as the example I've included with this article

demonstrates.

To see how it works, rename the CBX2213 program to CBX22131, rename the CBX22132 program to

CBX2213, and run the following command:

 LSTCMDPRMI CMD(CHGLINSDLC)

If everything goes according to my expectations, you should receive the following exception message

in return:

 Additional Message Information

 Message ID : CPFA33F Severity :

40

 Message type : Information

 Date sent : 06-12-10 Time sent :

20:07:42

 Message : Error occurred during data conversion.

 Cause : An error occurred using the CDRCVRT API to

convert data

 between the coded character set identifier (CCSID) for the job

1208 and the

 display device 277. The feedback code is X'00080005'. See the

Character

 Data Representation Architecture Level 2 Reference, SC09-1390, to

determine

 the cause of the error.

Page 6 of 8APIs by Example: Command Definition API and API XML Output Processing

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-command-definition-a...

 Recovery . . . : Correct the error and try the request again.

Once you've completed the test, remember to rename program CBX22131 back to CBX2213 in order

for the LSTCMDPRMI to work correctly also for commands producing comprehensive amounts of

XML data; at least up to and including 65200 bytes of XML data. I don't know if that has any

practical implication, but beyond that limit further code changes will need to be implemented in

order to avoid an exception during the command definition XML data processing.

This APIs by Example includes the following sources:

CBX221 -- RPGLE -- Retrieve Command XML Source - CPP

CBX221H -- PNLGRP -- Retrieve Command XML Source - Help

CBX221X -- CMD -- Retrieve Command XML Source

CBX2211 -- RPGLE -- List XML Document Events - CPP

CBX2211H -- PNLGRP -- List XML Document Events - Help

CBX2211V -- RPGLE -- List XML Document Commands - VCP

CBX2211X -- CMD -- List XML Document Events

CBX2212 -- RPGLE -- List XML Document Content Path - CPP

CBX2212H -- PNLGRP -- List XML Document Content Path - Help

CBX2212X -- CMD -- List XML Document Content Path

CBX2213 -- RPGLE -- List Command Parameter Information - CPP

CBX2213H -- PNLGRP -- List Command Parameter Information - Help

CBX2213X -- CMD -- List Command Parameter Information

CBX22132 -- RPGLE -- List Command Parameter Information – CPP (error

handling)

CBX221M -- CLP -- Retrieve Command XML Source - Build commands

To create all these objects, compile and run the CBX221M program following the instructions in the

source header. You'll also find compilation instructions in the respective source headers.

IBM RPG/IV XML documentation:

Debug

XML Operations (*)

RPG and XML (*)

(*) Use the Next Page button at page end to read through all pages

XML-Related articles:

RPG's XML-SAX Opcode

Processing XML Docs with RPG—Simplified

'Real World' Example of XML-INTO

Page 7 of 8APIs by Example: Command Definition API and API XML Output Processing

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-command-definition-a...

PTFs for Version 6.1 Enhance RPG's XML-INTO

Convert Data Between CCSIDs

XML editor XML Marker

This article demonstrates the following APIs:

Retrieve Command Definition (QCDRCMDD) API

iconv() function

QtqIconvOpen() function

iconv_close() function

Convert a Graphic Character String (QTQCVRT) API

Retrieve the source code for this API example.

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-command-definition-api-

and-api-xml-output-processing

Page 8 of 8APIs by Example: Command Definition API and API XML Output Processing

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-command-definition-a...

