
print | close

APIs by Example: Have a Peek at Validation List Entries

System iNetwork Programming Tips Newsletter

Carsten Flensburg

Carsten Flensburg

Thu, 05/28/2009 (All day)

I've discussed and demonstrated validation lists in a number of articles and utilities previously

published in this newsletter. On these occasions, I've used validation lists to store sensitive session

information as well as cryptographic encryption keys. Basically though, you can think of validation

lists as password files, storing a user ID and an encrypted password, and as such I've also

successfully exploited validation lists when developing web applications requiring a secure

authorization mechanism. In addition to user ID and password, a few other validation list attributes

are supported--more about this in a minute.

Although IBM provides native CL commands to create and delete a validation list object, you have to

resort to APIs when it comes to creating, changing, retrieving, verifying, or deleting validation list

entries. On the one hand, this constraint makes it a bit easier to control who is accessing validation

list entries because programming skills are involved, but on the other hand things are also a bit more

complicated when it comes to testing and debugging your applications that take advantage of

validation lists--not to mention the efforts involved in the administration of the validation list

entries. So why not create a few CL commands to close the gap, the first of which is presented in

today's APIs by Example.

Let's start with a brief description of the validation list entry. A validation list entry is divided into

three directly accessible main attributes:

1. Entry ID (up to 100 bytes)

2. Entry data (up to 1000 bytes)

3. Encrypted data (up to 600 bytes)

Each of the above attributes also have a related Coded Character Set Identifier (CCSID) attribute

available to identify the CCSID, if any, of the value stored in the Entry ID, the Entry data and the

Encrypted data, respectively. Also, the length of each of the attributes must be stored with it, and

this requirement has the impact that trailing blanks in the Entry ID, if included in the length

specification, actually must be included again when you try to locate this validation list entry. As the

example in the Validation List API manual demonstrates this property, "Smith" and "Smith " are

considered different Entry IDs due to the difference in length. As alleged, the Entry ID is where

you'd store a user name or identifier, and it constitutes the entry key when you need to retrieve,

verify, or delete the validation list entry.

The Entry data attribute simply offers a space to store unformatted data, a data structure, or for

example a text string describing the entry. The Encrypted data can be stored in one of two ways,

depending on the value of the system value QRETSVRSEC (retain server security data). If the

QRETSVRSEC system value is 0 (zero), the encrypted data is only one-way encrypted, so that the

clear value can't be retrieved again. You can still verify the encrypted value, though, because similar

to the System i password verification method, the value to compare against is simply encrypted using

Page 1 of 7APIs by Example: Have a Peek at Validation List Entries

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-have-peek-validation-l...

the same encryption key prior to the verification process, so that the encrypted values are compared

during this process.

If the QRETSVRSEC system value is set to 1 (one), however, the choice is yours, and the encrypted

data retrieval option is defined by the QsyEncryptData attribute value submitted to the API, when

you add or change the validation list entry. If all you need is to be able to verify a password, the one-

way encryption is of course the safest method to apply. If you need to be able to access the encrypted

data again, as I did in the two examples referred to above, setting the QsyEncryptData attribute to '1'

will enable you to do so.

If you've stored the encrypted data in a decryptable form, a CL command is actually available (as of

release 5.2) to allow you to remove it, system wide though. The Clear Server Security Data

(CLRSVRSEC) command lets you clear all decryptable authentication information associated with

user profiles and validation list (*VLDL) entries on your system. Prior to release 5.2, all this

information was implicitly removed when the QRETSVRSEC system value was changed from 1 to 0.

Performing such a change on subsequent releases only prohibits the retrieval of the decryptable data;

the data remains in the validation list entry until the CLRSVRSEC command is run; it just can't be

retrieved by any means as long as QRETSVRSEC is 0. Once QRETSVRSEC is changed back to 1, the

encrypted data will again be retrievable, provided that the CLRSVRSEC command was not run in the

mean time.

Validation list entries also contain information maintained by the system and enabling you to

establish and enforce password security and policy. The following four events are recorded and

immediately available by using the appropriate API:

1. Validation list entry create timestamp

2. Encrypted data change timestamp

3. Encrypted data last verified timestamp

4. The count of invalid verification attempts since last successful

It is, however, up to you to actually take advantage of this information and put the necessary control

and monitoring facilities in place.

As far as creating, accessing, and deleting validation list entries, quite a few APIs are available in

both OPM and ILE versions. Here's the list for release 5.4, and I've removed all duplicate OPM APIs:

• Add Validation List Entry (QsyAddValidationLstEntry()

• Change Validation List Entry (QsyChangeValidationLstEntry()

• Convert Validation List (QSYCVTVL)

• Find First Validation List Entry (QsyFindFirstValidationLstEntry()

• Find Next Validation List Entry (QsyFindNextValidationLstEntry()

• Find Validation List Entry (QsyFindValidationLstEntry()

• Find Validation List Entry Attributes (QsyFindValidationLstEntryAttrs()

• Open List of Validation List Entries (QSYOLVLE)

• Remove Validation List Entry (QsyRemoveValidationLstEntry()

• Verify Validation List Entry (QsyVerifyValidationLstEntry()

• Add Validation List Certificate (QsyAddVldlCertificate)

• Check Validation List Certificate (QsyCheckVldlCertificate)

• List Validation List Certificates (QsyListVldlCertificates)

• Remove Validation List Certificate (QsyRemoveVldlCertificate)

Page 2 of 7APIs by Example: Have a Peek at Validation List Entries

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-have-peek-validation-l...

For the purpose of displaying a known validation list entry and its attributes, the Find Validation List

Entry (QsyFindValidationLstEntry() and Find Validation List Entry Attributes

(QsyFindValidationLstEntryAttrs() APIs do the job nicely. To show you how, I've created the Display

Validation List Entry (DSPVLDLE) command and the associated command processing program.

Here's how the command prompt looks:

 Display Validation List Entry (DSPVLDLE)

 Type choices, press Enter.

 Validation list Name

 Library *LIBL Name, *LIBL,

*CURLIB

 Entry ID

 Coded character set identifier *DFT 1-65534, *DFT,

*HEX

 Output format *CHAR *CHAR, *HEX

 Output * *, *PRINT

The qualified name of the validation list and the entry ID are the command's key parameters,

uniquely identifying the validation list entry to display. The Coded character set identifier defines

the CCSID of the entry ID and is as such not directly used as a search argument but merely identifies

the CCSID of the provided entry ID. You can choose to display the entry ID, entry data, and

encryption data (if available) in either character or hexadecimal format, depending on the special

value provided for the Output format (OUTFMT) parameter. And finally, the Output (OUTPUT)

parameter decides whether the validation list entry should be displayed or printed. An online help

text panel group is provided to explain all command parameters in detail.

Below is an example of how entry ID "0 " (8 trailing blanks) in the QSASRVID2B validation list

looks on my system. Here's page 1:

 Display Validation List Entry

 WYNDHAMW

 23-05-09

 19:41:42

 Validation list . . : QSASRVID2B

 Library : QUSRSYS

Page 3 of 7APIs by Example: Have a Peek at Validation List Entries

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-have-peek-validation-l...

 Entry ID : 0

 CCSID : 37

 Length : 9

 Entry data : 940665-58CAB V5R2M0P20003IQ2004-

03-13-16.06.02

 810

 CCSID : 37

 Length : 50

 More...

 Press enter to continue.

 F3=Exit F5=Refresh F12=Cancel F22=Display entire field value

Page down and see the remaining validation list entry information on page 2:

 Display Validation List Entry

 WYNDHAMW

 23-05-09

 19:41:42

 Validation list . . : QSASRVID2B

 Library : QUSRSYS

 Encrypted data : oKpy#4S5¼$×hME[¬

Page 4 of 7APIs by Example: Have a Peek at Validation List Entries

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-have-peek-validation-l...

 CCSID : 37

 Length : 16

 Create timestamp : 2005-08-24-16.05.43.858

 Encrypted data timestamp . . : 2005-08-24-16.05.43.858

 Data verified timestamp . . : *NONE

 Invalid verification count . : 0

 Bottom

 Press enter to continue.

 F3=Exit F5=Refresh F12=Cancel F22=Display entire field value

Online help text is also provided for the above display panel. Simply position the cursor and press F1

to see the help text for the chosen field or panel segment. Note that the encrypted data is included in

the display only if the requesting user profile has *ALLOBJ and *SECADM special authority. In

addition to regular object authority to the validation list in order to access the list entries, *USE,

*ADD, and *UPD data authority is also required to retrieve the encrypted data. If you want even

more granular control you could employ the Function Usage facility to decide which user profiles

should be allowed to display the encrypted data using the DSPVLDLE command. I've covered the

Function Usage concept and APIs in earlier articles, so please look up the links below for code

examples and more information on this topic.

On a related note, release 5.4 introduced a new validation list object model, which now allows a

validation list to grow to a maximum size of 1TB, instead of the original 4GB validation list capacity.

The IBM announcement of this change also notes that the existing entries are stored more efficiently

in a 1TB validation list. To allow existing validation lists to take advantage of this improvement, IBM

included the Convert Validation List (QSYCVTVL) API with the mentioned release.

While the simple API parameter structure of this API makes it straightforward to call the API from a

command line, to make it even easier I've included a CL command interface (CVTVLDL) to the API

as well as online help text to document the change and its implications. If object backward

Page 5 of 7APIs by Example: Have a Peek at Validation List Entries

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-have-peek-validation-l...

compatibility is an issue for you, please note that if a validation list is converted to a 1TB validation

list, it can't be saved to a release prior to 5.2. The DSPVLDLE and CVTVLDL commands are the first

of a number of validation list commands that I will be presenting in the API by Example column,

look for more validation list coverage and commands in future issues of this newsletter.

This APIs by Example includes the following sources:

CBX204 -- RPGLE -- Display Validation List Entry - CPP

CBX204E -- RPGLE -- Display Validation List Entry - UIM General Exit

CBX204H -- PNLGRP -- Display Validation List Entry - Help

CBX204P -- PNLGRP -- Display Validation List Entry - Panel Group

CBX204V -- RPGLE -- Display Validation List Entry - VCP

CBX204X -- CMD -- Display Validation List Entry

CBX204M -- CLP -- Display Validation List Entry - Build command

CBX2041H -- PNLGRP -- Convert Validation List - Help

CBX2041X -- CMD -- Convert Validation List

To create all these DSPVLDLE command objects, compile and run CBX202M, following the

instructions in the source header. As always, you'll also find compilation instructions in the

respective source headers, and these guidelines should help you compile the CVTVLDL command

objects as well.

IBM Documentation:

Validation List Objects

Planning the Use of Validation List Objects

Validation list on HTTP Server

Previously published related articles:

Securing Web Servers by Environment

APIs by Example: User Function Registration APIs, Part 1

APIs by Example: User Function Registration APIs, Part 2

APIs by Example: User Function Registration APIs, Part 3

APIs by Example: Validation List APIs

APIs By Example: Profile Authorization Management

APIs by Example: Cryptographic Services APIs, Part 3

APIs by Example: Cryptographic Services APIs, Part 7

Page 6 of 7APIs by Example: Have a Peek at Validation List Entries

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-have-peek-validation-l...

This article demonstrates the following Validation List APIs:

Convert Validation List (QSYCVTVL) API

Find Validation List Entry (QsyFindValidationLstEntry) API

Find Validation List Entry Attributes (QsyFindValidationLstEntryAttrs) API

Validation List APIs

Digital Certificate Management APIs

Retrieve the source code for this API example.

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-have-peek-validation-

list-entries

Page 7 of 7APIs by Example: Have a Peek at Validation List Entries

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-have-peek-validation-l...

