APIs by Example: Reverse Engineering Database Files and Objects to SQL DDL Stat... Page 1 of 7

ﬂ print | close

APIs by Example: Reverse Engineering Database Files and
Objects to SQL DDL Statements

System iNetwork Programming Tips Newsletter

Carsten Flensburg
Carsten Flensburg
Thu, 08/09/2007 (All day)

We've been covering the topic of using SQL instead of DDS to define your database files for quite
some time now. The benefits and possible problems and pitfalls have been documented in a number
of articles, as have the various methods and approaches to actually making the move from DDS to
SQL. To get you up to speed in case you missed any of the articles when they were initially published,
I've included links at the end of this article. Please note that some of the articles require a ProVIP
membership to access.

Reading these articles, you'll notice that there's an option of using iSeries Navigator to take existing
DDS-defined database files and generate the SQL Data Definition Language (DDL) statements
needed to create or re-create these objects as SQL file objects, such as tables, views, and indexes. This
iSeries Navigator facility is based on an i5/0S API: Generate Data Definition Language
(QSQGNDDL). And although iSeries Navigator continues to improve in performance and usability
with every new release, in some cases using a CL. command to get the job done is still faster and more
convenient. With that reality in mind, I took advantage of the QSQGNDDL API to create a Generate
SQL Data Definition Language (GENSQLDDL) command that offers the same reverse engineering
services that iSeries Navigator offers.

The QSQGNDDL API — and consequently the GENSQLDDL command — is not limited to generating
DDL based on DDS-defined file objects; it can take any SQL database object and create the SQL
statements required to create or re-create the object in question. The following database object types
are supported:

« TABLE or PF — An SQL table or physical file

« VIEW or LF — An SQL view or logical file

« SCHEMA or LIB — An SQL schema (collection) or library
« ALIAS — An SQL alias

+ INDEX — An SQL index

« TRIGGER — The object attribute is a trigger

« CONSTRAINT — The object attribute is a constraint

« FUNCTION — An SQL function

« PROCEDURE — An SQL procedure

« TYPE — The object is an SQL type

The GENSQLDDL command also has many formatting parameters that let you control which SQL
statements are included in the DDL generation and how they are formatted. I explain a couple of the
more important options in the following paragraphs.

« Naming: This option defines the naming convention used for qualified names in the generated
SQL statements. The possible values are:

http://iprodeveloper.com/print/rpg-programming/apis-example-reverse-engineering-d... 04-04-2014

APIs by Example: Reverse Engineering Database Files and Objects to SQL DDL Stat... Page 2 of 7

o *SQL — The collection.table syntax
o *SYS — The library/file syntax
« Standards option: The standards option specifies whether the generated SQL statements
should contain DB2 for i5/OS extensions to the DB2 Universal Database family, SQL, or the
ANSI and ISO SQL standards. The possible values are:
o *DB2EXT — DB2 for i5/0S extensions can be generated in SQL statements.
o *DB2STD — The generated SQL statements must conform to SQL statements common
to the DB2 Universal Database family.
o *ISOANSI — The generated SQL statements must conform to the following ISO and
ANSI SQL standards: ISO 9075-1: 1999, Database Language SQL and ANSI X3.135-1-
1999, Database Language SQL.

The standards option is important because it affects the type of SQL statements that the
GENSQLDDL command allows in the generated source and consequently in which environments
they can be successfully run. Here's an excerpt from the QSQGNDDL API documentation explaining
some of the considerations involved in setting this parameter:

If *DB2STD or *ISOANSI is chosen, the SQL statements generated may not completely
represent the object in DB2 UDB for iSeries; however, the statements will be compatible
with the specified DB2 Family or ANSI and ISO standards option.

If the object is an SQL function, SQL procedure, SQL trigger, or SQL view, the SQL
statements in the body of the object are included in the generated SQL statement.
Hence, if the Standards option *DB2STD or *ISOANSI is chosen, the generated SQL
statement may not conform to the specified standards option since the statements
within the body of the SQL object may not conform to the specified standard. For
example, if a CREATE INDEX statement exists in the body of an SQL procedure, the
generated CREATE PROCEDURE statement will contain the CREATE INDEX
statement even if Standards option *DB2STD or *ISOANSI is chosen.

There is no attempt to take product-specific limits into account. For example, a table
name in DB2 for i5/0S can be 128 bytes, but other products might not support table

names that long. Thus, even if the generated SQL statement is standard, it still might
not work on other products if they have smaller limits than those on DB2.

If *DB2STD is specified:

+ the naming option must be *SQL.

« the date format must be *ISO, *USA, *EUR, or *JIS.
« the time format must be *ISO, *USA, *EUR, or *JIS.
« the decimal point must be a period.

If *ISOANSI is specified:

« the naming option must be *SQL.

« the date format must be *ISO.

« the time format must be *ISO.

« the decimal point must be a period.

« an ALIAS object type must not be specified.

A comprehensive explanation of all parameters is in the command help text panel group. Here's the
GENSQLDDL command prompt in its entirety:

http://iprodeveloper.com/print/rpg-programming/apis-example-reverse-engineering-d... 04-04-2014

APIs by Example: Reverse Engineering Database Files and Objects to SQL DDL Stat...

Generate SQL Data Def Language (

Type choices, press Enter.

Database object

Database object library
*LIBL...

Database object type
*TABLE. ..
Source file

Library
*CURLIB
Source member
*LAST
Member option

Statement formatting option
Naming
Standards option
*TSOANSI
Date format
*USA...
Date separator
Time format
*USA, *HMS
Time separator
Decimal point
Generation severity level
Message severity level
DROP option
*GENDROP
COMMENT ON statement option
LABEL ON statement option
*GENLABEL
Header generation option
Trigger generation option

Constraints generation option

System name option
*GENRENAME

*LIBL

*PF

*LIBL

*FIRST

*APPEND

*NONE

*SQL

*DB2EXT

*IS0O

10

*NOGENDROP

*NOGENCOMMENT

*NOGENLABEL

*NOGENHDR

*GENTRG

*GENCST

*NOGENRENAME

http://iprodeveloper.com/print/rpg-programming/apis-example-reverse-engineering-d...

GENSQLDDL)

Character value,

*PF, *LF, *LIB,
Name
Name, *LIBL,
Name, *FIRST,
*APPEND, *REPLACE
*NONE, *FMTCHR
*SQL, *SYS
*DB2EXT, *DB2STD,

*1SO, *EUR, *JIS,

/, =, ., ,, *BLANK
*EUR, *JIS,

*BLANK

A 4 A 4 r s

*NOGENDROP,

*NOGENLABEL,
*NOGENHDR, *GENHDR
*NOGENTRG, *GENTRG
*NOGENCST, *GENCST

*NOGENRENAME,

Page 3 of 7

04-04-2014

APIs by Example: Reverse Engineering Database Files and Objects to SQL DDL Stat... Page 4 of 7

The GENSQLDDL command's last three parameters — Trigger generation option, Constraints
generation option, and System name option — are all V5R4 inventions. In earlier releases, the CPP
therefore ignores those three parameters. The QSQGNDDL API was introduced in V5R1, limiting its
use to that and later releases.

The GENSQLDDL command places the generated SQL statements in the specified source member
and source file. Note that the source file must have a record length of minimum 92 bytes, otherwise
the API or command fails. To execute the SQL statements, you can use the source member as direct
input to the RUNSQLSTM command:

Run SQL Statements (RUNSQLSTM)

Type choices, press Enter.

Source file Name

Library *LIBL Name, *LIBL,
*CURLIB

Source member Name

Commitment control *CHG *CHG, *UR, *CS,
*ALL, *RS...

Naming *SYS *SYS, *SQL

Additional Parameters

Severity level 10 0-40

Date format *JOB *JOB, *USA, *ISO,
*EUR. ..

Date separator character *JOB *JOB, /, y v
' ', *BLANK

Time format *HMS *HMS, *USA, *ISO,
*EUR, *JIS

Time separator character *JOB *JOB, , ;o !
', *BLANK

Default collection *NONE Name, *NONE

IBM SQL flagging *NOFLAG *NOFLAG, *FLAG

ANS flagging *NONE *NONE, *ANS

Decimal Point *JOB *JOB, *SYSVAL,
*PERIOD. ..

Sort sequence *JOB Name, *JOB,
*LANGIDUNQ. ..

Library Name, *LIBL,
*CURLIB

Language id *JOB *JOB, *JOBRUN...

Print file QSYSPRT Name

http://iprodeveloper.com/print/rpg-programming/apis-example-reverse-engineering-d... 04-04-2014

APIs by Example: Reverse Engineering Database Files and Objects to SQL DDL Stat... Page 5 of 7

Library *LIBL Name, *LIBL,

*CURLIB

Statement processing *RUN *RUN, *SYN

Allow copy of data *OPTIMIZE *OPTIMIZE, *YES,
*NO

Allow blocking *ALLREAD *ALLREAD, *NONE,
*READ

SQL rules« .« o« o . o . *DB2 *DB2, *STD

Decimal result options:

Maximum precision 31 31, 63

Maximum scale 31 0-63

Minimum divide scale 0 0-9

Listing output *NONE *NONE, *PRINT

Target release *CURRENT *CURRENT, VxRxMx

Debugging view *NONE *NONE, *SOURCE,
*STMT, *LIST

Close SQL Cursor« « « . . *ENDACTGRP *ENDACTGRP,
*ENDMOD

Delay PREPARE e e e e e e e e *NO *NO, *YES

User profile *NAMING *NAMING, *USER,
*OWNER

Note that some of the parameters are identical to those that the GENSQLDDL command offers, and
they are required to match in order for the RUNSQLSTM command to run successfully.

After you install the GENSQLDDL command, you can give it a test drive by following these
instructions:

1. Run the GENSQLDDL command against a file or database object of your choice — for
example:

GENSQLDDL DBOBJ (QADBXREF)
DBLIB (QSYS)
TYPE (*PF)
SRCFILE (QGPL/QDDLSRC)
MBR (QADBXREF')
MBROPT (*REPLACE)
NAMING (*SQL)

2. Be sure to carefully read the messages and information issued during the conversion process
and added to the source member. Next, adapt the generated source member to allow the
generated SQL statements to be executed in the next step. You would, for example, need to

http://iprodeveloper.com/print/rpg-programming/apis-example-reverse-engineering-d... 04-04-2014

APIs by Example: Reverse Engineering Database Files and Objects to SQL DDL Stat... Page 6 of 7

change the library in the CREATE TABLE statement to something more appropriate than
QSYS, in case you have run the preceding GENSQLDDL command example.

3. Execute the RUNSQLSTM command against the newly created source member:

RUNSQLSTM SRCFILE (QGPL/QDDLSRC)
SRCMBR (QADBXREF)
NAMING (*SQL)

4. Verify that the file specified in the CREATE TABLE statement was successfully created. If
errors occur during the execution of the SQL statement, you receive an SQL9010 exception
message: RUNSQLSTM command failed. You can find diagnostic messages in your job's job
log to point you to the actual cause of the failure.

After you complete the test, consider deleting the newly created file if you have no other use for it.

This APIs by Example includes the following sources:

CBX176 —-- RPGLE -- Generate SQL Data Definition Statements -- CPP
CBX176H -- PNLGRP -- Generate SQL Data Definition Statements -- Help
CBX176X —-- CMD -— Generate SQL Data Definition Statements

CBX176M -- CLP -—- Generate SQL Data Definition Statements -- Build
command

To create all these objects, compile and run CBX176M. Compilation instructions are in the source
headers, as usual.

SQL/DDS-related articles previously published on SystemiNetwork.com:

Stop Using DDS! A Better Way to Make Files (April 12, 2007, article ID 54441)

Follow Up to: Stop Using DDS! A Better Way to Make Files (April 26, 2007, article ID 54545)

Replacing a DDS Physical File with an SQL Table (May 2005, article ID 20057)

Performance Comparison of DDS-Defined Files and SQL-Defined Files (May 2005, article ID 20067)

Database Harmony: "Traditional" and SQL Coexistence (May 2005, article ID 20060)

Is DDS Dead? (April 2001, article ID 9821)

IBM SQL/DDL-related documentation:

Data Definition Language:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/salp /rbafvsqgltech.htm

Types of SQL Statements:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/sqlp/rbafystmtype.htm

SQL Concepts:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/sqlp/rbafysqlconcepts.htm

http://iprodeveloper.com/print/rpg-programming/apis-example-reverse-engineering-d... 04-04-2014

APIs by Example: Reverse Engineering Database Files and Objects to SQL DDL Stat... Page 7 of 7

SQL Objects:
http://publib.boulder.ibm.com/infocenter/iseries /vsr4/topic/sqlp /rbafyvsglobjects.htm

Run SQL Statements (RUNSQLSTM) Command:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/cl/runsqlstm.htm

This article demonstrates the following database and file API:

Generate Data Definition Language (QSQGNDDL) APT:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/apis/gqsqgnddl.htm

You can retrieve the source code for this API example from:
http://www.pentontech.com/IBMContent/Documents/article/55321_273 GenSqlDdl.zip.

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-reverse-engineering-
database-files-and-objects-sql-ddl-statements

http://iprodeveloper.com/print/rpg-programming/apis-example-reverse-engineering-d... 04-04-2014

