
print | close

APIs by Example: Cryptographic Key Management -
Creating and Translating Key Stores

System iNetwork Programming Tips Newsletter

Carsten Flensburg

Carsten Flensburg

Thu, 01/24/2008 (All day)

As of V5R4, i5/OS now includes key stores. Technically, key stores have an object type of *FILE --

and more specifically, a physical data base file -- but data access to key stores is only possible

through the Cryptographic Services APIs. Key stores offer the option of storing key encryption keys

or data keys, securely encrypted under a master key. If you are unfamiliar with the concepts of

master keys, key encryption keys, and data keys, please see my earlier Cryptographic Key

Management articles, which cover those topics in more detail; links are provided at the end of this

article.

The Cryptographic Services APIs for managing key stores provide a variety of functions, such as

creating a key store, generating or writing a key store record, and deleting a key store record. Other

key store APIs let you retrieve the attributes of a key store record or translate all the key store records

in a key store encrypted with one master key to another. To discuss key stores in more detail and

provide some key store API coding examples, today's issue of APIs by Example presents a pair of CL

commands named Create Key Store (CRTKS) and Translate Key Store (TRNKS) that are based on the

respective APIs.

The Cryptographic Services APIs that require a key as input to a cryptographic operation have had

added a new KEYD0400 key description parameter format to enable the use of key encryption keys

or data keys stored in a key store. This new format lets you specify a qualified key store name and a

key label for the key parameter. The key label is the name that uniquely identifies a specific key store

record within a key store; you define it when you add the key record to the key store. I discuss key

store records in more detail in a moment, and an upcoming APIs by Example will look more closely

at the options and methods controlling the management of key store records.

Specifying the KEYD0400 format as input to a Cryptographic Services API causes the API to retrieve

the key from the key store and decrypt it with the master key associated with the key store. While in

the key store, the key is encrypted and thereby securely protected by the master key. The option of

specifying the key store record directly to a Cryptographic Services API lets you maintain a closed

circuit for the duration of the entire encryption process performed by that API, thus avoiding the

exposure of the key outside of the API domain.

However, this circumstance requires careful consideration on your part to ensure that users are given

proper authorization to both the key stores and the APIs involved. Anyone obtaining this access will

be able to extract the key from the key store, or use it to retrieve the data encrypted under it.

Likewise, it.s very important that you include key stores in your backup schedule to enable recovery

of the key encryption keys and data keys stored there. Imagine if you had a system failure, and

restored your data to a new computer, only to learn that none of the encrypted data is accessible

because the key stores are gone! Further backup considerations apply at the point where new key

Page 1 of 9APIs by Example: Cryptographic Key Management - Creating and Translating Key St...

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-key-ma...

store records have been added or the key store has been translated. I explain key store translation

shortly, so bear with me if this is an unfamiliar term to you.

Key stores are a great addition to the Cryptographic Services APIs and the cryptographic

infrastructure included in i5/OS -- let's look at how to create them with the Create Key Store

(QC3CRTKS/Qc3CreateKeyStore) API. This API can be called as a program named QC3CRTKS, or as

an ILE procedure named Qc3CreateKeyStore. For ease of use and to provide an example of how to

call the API, I.ve created a Create Key Store (CRTKS) CL command -. here.s what the CRTKS

command prompt looks like:

 Create Key Store (CRTKS)

 Type choices, press Enter.

 Key store Name

 Library *CURLIB Name, *CURLIB

 Master key ID 1-8

 Text 'description' *BLANK

 Authority *EXCLUDE Name, *EXCLUDE,

*LIBCRTAUT...

You specify a qualified key store name, the Master Key ID of the master key you want to associate

with the key store, as well as an optional text description and the public authority to assign to the key

store. Please note that the specified Master Key ID need not be set at the point where the key store is

created, but rather when key store records are actually added.

For the reasons explained earlier, I have defaulted the public authority I have to *EXCLUDE. But

remember that object authority offers no protection against user profiles that have *ALLOBJ special

authority in the profile! Careful planning of your user profile and object authorization scheme is still

of utmost importance to ensure a safe and secure cryptographic infrastructure.

To try out the CRTKS utility, run the following command to create a key store by the name of

KEYSTORE01 in the QGPL library:

 CRTKS KEYSTORE(QGPL/KEYSTORE01)

 KEYID(7)

 TEXT(*BLANK)

 AUT(*EXCLUDE)

If the above CRTKS command completes successfully, you'll receive a completion message that

verifies that the key store was created.

 Message ID : CBX0021 Severity :

00

 Message type : Completion

Page 2 of 9APIs by Example: Cryptographic Key Management - Creating and Translating Key St...

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-key-ma...

 Date sent : 19-01-08 Time sent :

11:40:40

 Message : Key store KEYSTORE01 created in library QGPL.

 Cause : The key store KEYSTORE01 was successfully

created in

 library QGPL. The master key ID 7 will be used to encrypt the

cryptographic

 keys stored in the key store.

To verify that a key store was created as opposed to an ordinary physical file, try executing the Run

Query (RUNQRY) command against it. You will receive the QRY2293 exception message: Query

cannot be run. See lower level messages. Checking out the job log leads to the discovery of a

CPF4234 diagnostic message preceding the QRY2293 exception message:

 Message ID : CPF4234 Severity :

50

 Message type : Diagnostic

 Date sent : 19-01-08 Time sent :

11:55:51

 Message : Input or output operations for member

KEYSTORE01 not

 allowed.

 Cause : Member KEYSTORE01 file KEYSTORE01 in library

QGPL could

 not be opened because it does not allow any input or output

operations. The

 input and output operations allowed for member KEYSTORE01 are

contained in

 the attributes specified for file KEYSTORE01 in library QGPL. The

 attributes of the file can be displayed by using the DSPFD

command.

The Display File Description (DSPFD) explains the cause of the above CPF4234 diagnostic message.

Note the bolded part of this excerpt of the DSPFD command output:

 19-01-08 Display File Description

 DSPFD Command Input

 File : FILE

KEYSTORE01

 Library : QGPL

Page 3 of 9APIs by Example: Cryptographic Key Management - Creating and Translating Key St...

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-key-ma...

 Type of information : TYPE *ALL

 File attributes : FILEATR *ALL

 System : SYSTEM *LCL

 File Description Header

 File : FILE

KEYSTORE01

 Library : QGPL

 Type of file : Physical

 File type : FILETYPE *DATA

 Auxiliary storage pool ID : 00001

 Data Base File Attributes

 Externally described file : Yes

 SQL file type : TABLE

 File level identifier :

 1080119114039

 Creation date : 19-01-08

 Text 'description' : TEXT

 Distributed file : No

 Partitioned SQL Table : No

 DBCS capable : No

 Maximum members : MAXMBRS 1

 Number of constraints : 1

 Number of triggers : 0

 Number of members : 1

 ...

 Reuse deleted records : REUSEDLT *YES

 Coded character set identifier : CCSID 65535

 Allow read operation : No

 Allow write operation : No

 Allow update operation : ALWUPD *NO

 Allow delete operation : ALWDLT *NO

 Record format level check : LVLCHK *YES

 Access path : Keyed

 Access path size : ACCPTHSIZ *MAX1TB

 Access path logical page size : PAGESIZE *KEYLEN

 Maximum key length : 97

 Maximum record length : 2556

 ...

Page 4 of 9APIs by Example: Cryptographic Key Management - Creating and Translating Key St...

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-key-ma...

As you can see, none of the data access operations are allowed for key store files: Read, write, update

and delete operations are all prohibited. None of these attributes, however, prevent you from

displaying the key store record format. Using the Display File Fields (DSPFFD2) command

(presented in an earlier APIs by Example article) reveals the following database record format

layout:

 File : KEYSTORE01 Record length . : 2556

 Library . . . : QGPL Field count . . : 10

 Record format . : KEYSTORE01

 File type . . . : PF Include field . .

 Access path . . : *KEYED UNIQUE Include text . . .

 Field Data type Buffer Length Dig Dec Key Text

 KYLABEL Char 1 97 1 A

 RESRV1 Char 98 3

 KEYTYPE Binary 101 4 9 0

 KEYSIZE Binary 105 4 9 0

 TIMEDATE Char 109 4

 KVV Char 113 20

 KYVARIANT Binary 133 4 9 0

 CHECKSUM Binary 137 4 9 0

 RESRV2 Char 141 2

 TOKEN Var Char 143 2414

The above record format applies to all i5/OS key store files and the attributes together define the

information stored in a key store record. But more about key store records next time. If you want to

delete the key store created earlier, you can do so using the Delete File (DLTF) command:

 DLTF FILE(QGPL/KEYSTORE01)

The second command I present today, Translate Key Store (TRNKS), is also based on a

corresponding API -- the Translate Key Store API is named QC3TRNKS and Qc3TranslateKeyStore

for the OPM and ILE versions, respectively.

Page 5 of 9APIs by Example: Cryptographic Key Management - Creating and Translating Key St...

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-key-ma...

Translation in this context reflects the event that the keys in the key store are first decrypted using

the master key that originally encrypted the keys and, in the same process, immediately following

decryption the keys are again encrypted using another master key. The need to perform this re-

encryption process could be prompted by one of two circumstances:

1. The same master key ID has changed version since the original encryption of the key store

records. This occurs if, using the Set Master Key command or API, a new master key version

has been promoted to the current version, and the original version has been saved to the old

version. To avoid the possible loss of the old master key version, should someone repeat the

aforementioned process, I recommend that you translate all keys still encrypted under the old

version of the master key to the current version as soon as possible, after you set the master

key.

2. Suppose you decide to change the master key ID associated with a key store. Say a key store is

currently associated with master key ID 1 and you need to change the key store master key to

master key ID 2. You can use the TRNKS command or API to do this. The same precautions

mentioned above apply here as well.

As you can see below, the Translate Key Store (TRNKS) command has a quite simple interface:

 Translate Key Store (TRNKS)

 Type choices, press Enter.

 Key store Name

 Library Name

 + for more values

 Master key ID 1-8

You can specify up to 32 different key stores in one execution of the TRNKS command. The TRNKS

API will process each key store in turn, using the currently associated Master Key ID and the stored

Key Verification Value (KVV) to locate the correct version of the master key (as explained last time)

to decrypt all keys. Then, immediately following decryption, the current version of the specified

master key ID is used to re-encrypt the keys. Should the translation process at some point encounter

an error or exception, the process will be terminated immediately, and the job log of the executing

job should be consulted to establish cause and consequences.

In addition to the security, confidentiality, and authorization aspects mentioned earlier, the

following conditions and considerations apply to the utilities and APIs presented in this article: The

Create Key Store API only requires the usual *EXECUTE and *ADD authority to the library in which

the key store is created. I.ve decided that for my system though, to further add the requirement of

*ALLOBJ and *SECADM special authority in the user profile executing the Create Key Store

(CRTKS) command.

This precaution reduces the number of user profiles allowed to create key stores (using the CRTKS

command) significantly on systems with an adequate security configuration, and I.d like to limit

potential sources of errors and mistakes as much as possible, also in the context at hand. Since the

source for the CRTKS CPP is included with this article, you.re of course free to relax this restriction

should you decide to do so.

Page 6 of 9APIs by Example: Cryptographic Key Management - Creating and Translating Key St...

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-key-ma...

The Translate Key Store API needs *OBJOPR, *READ and *UPD authority to the key store object in

order to process the key store records. I.ve replaced this requirement with function usage

authorization. This implies that any user that attempts to run the Translate Key Store (TRNKS)

command will need to be specifically and individually authorized to the

CBX_CRYPTO_KEYSTORE_XLATE that is registered by the CBX185M CL program provided with

this article to build the CRTKS and TRNKS commands. The user running the CBX185M CL program

will be authorized to the TRNKS command.

Use the following command to locate and change the function usage registrations applying to the key

management utilities delivered with the Cryptographic Key Management articles in previous APIs by

Example articles:

 WRKFCNUSG FCNID(CBX_CRYPTO_*)

Given that you.ve loaded and installed the commands and usage registrations provided with this and

the previous APIs by Example articles, you should see a list similar to the one below:

 Work with Function Usage

 Type options, press Enter.

 2=Change usage 5=Display usage

 Opt Function ID Function Name

 CBX_CRYPTO_KEYSTORE_XLATE Cryptograhic key store

translation

 CBX_CRYPTO_MASTERKEY_CLEAR Clear cryptograhic master key

 CBX_CRYPTO_MASTERKEY_LOAD Cryptograhic master key part

load

 CBX_CRYPTO_MASTERKEY_SET Set cryptograhic master key

 CBX_CRYPTO_MASTERKEY_TEST Cryptograhic master key test

 Bottom

 Parameters for option 2 or command

 ===>

 F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel

F17=Top

 F18=Bottom

Use option 2 to add and/or remove users. function usage. You can find more information on function

usage registration prerequisites and requirements in the APIs by Example article of December 13,

2007, please follow the link provided below.

I.ll be continuing the Cryptographic Key Management coverage in upcoming issues of APIs by

Example. Next time I.ll show you how to generate, display, and delete key store records, so stay

Page 7 of 9APIs by Example: Cryptographic Key Management - Creating and Translating Key St...

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-key-ma...

tuned. And in the meantime, if you.re facing the challenge of implementing cryptographic

applications of your own and looking for information and inspiration, be sure to check out the links

below pointing to NIST (National Institute of Standards and Technology) publications, providing a

wealth of application security and cryptography related documentation and recommendations.

This APIs by Example includes the following sources:

CBX180 -- RPGLE -- Cryptographic Key Management - Services

CBX180B -- SRVSRC -- Cryptographic Key Management - Binder source

CBX185 -- RPGLE -- Create Key Store - CPP

CBX185H -- PNLGRP -- Create Key Store - Help

CBX185X -- CMD -- Create Key Store

CBX186 -- RPGLE -- Translate Key Store - CPP

CBX186H -- PNLGRP -- Translate Key Store - Help

CBX186X -- CMD -- Translate Key Store

CBX185M -- CLP -- Cryptographic Key Management III - Build commands

To create all above objects, compile and run CBX185M. You.ll find compilation instructions in the

source headers as usual. Note that the two previously published commands Add Function

Registration (ADDFCNREG) and Change User Function Usage (CHGUSRFCNU) are required for the

Translate Key Store (TRNKS) command to run successfully -. and for the CBX185M program to

compile.

The sources for the two aforementioned user function commands were included with my previous

APIs by Example article of November 8. In case you missed that article, you can find it at the link

below. Successfully compiling and running the CBX180M CL setup program included with that

article is a prerequisite to running the CBX185M setup program included today.

Previously published related articles:

APIs by Example: Working with Database Files, Fields and More:

http://www2.systeminetwork.com/article.cfm?id=55705 (October 11, 2007)

APIs by Example: Cryptographic Key Management - Loading and Setting Master Keys:

http://www2.systeminetwork.com/article.cfm?id=55862 (November 8, 2007)

APIs by Example: Cryptographic Key Management - Testing and Clearing Master Keys:

http://www2.systeminetwork.com/article.cfm?id=56035 (December 13, 2007)

Other related documentation:

RFC 4107 Guidelines for Cryptographic Key Management:

http://tools.ietf.org/html/rfc4107

NIST (National Institute of Standards and Technology) Special Security Publications:

http://csrc.nist.gov/publications/PubsSPs.html

NIST SP 800-57: Recommendation for Key Management . Part 1:

http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf

Page 8 of 9APIs by Example: Cryptographic Key Management - Creating and Translating Key St...

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-key-ma...

NIST SP 800-57: Recommendation for Key Management . Part 2:

http://csrc.nist.gov/publications/nistpubs/800-57/SP800-57-Part2.pdf

NIST (National Institute of Standards and Technology) FIPS Publications:

http://csrc.nist.gov/publications/PubsFIPS.html

IBM documentation:

i5/OS: Cryptography concepts:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajc/rzajcconcepts.htm

Cryptographic Services Master Keys:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qc3MasterKeys.htm

Cryptographic Services Key Store:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qc3KeyStore.htm

This article demonstrates the following Cryptographic Services API:

Create Key Store (Qc3CreateKeyStore) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qc3crtks.htm

Translate Key Store (Qc3TranslateKeyStore) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qc3trnks.htm

Key Management APIs:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/catcrypt6.htm

Cryptographic Services APIs:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/catcrypt.htm

http://www.pentontech.com/IBMContent/Documents/article/56187_461_CrtKsTrnKs.zip.

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-cryptographic-key-

management-creating-and-translating-key-stores

Page 9 of 9APIs by Example: Cryptographic Key Management - Creating and Translating Key St...

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-key-ma...

