
print | close

APIs by Example: Cryptographic Key Management -
Loading and Setting Master Keys

System iNetwork Programming Tips Newsletter

Carsten Flensburg

Carsten Flensburg

Thu, 11/08/2007 (All day)

In a number of previous articles I have discussed the Cryptographic Services APIs and provided

commands and code to support a cryptographic infrastructure, including key management facilities.

However, release V5R4 has introduced many new cryptographic APIs to ease and support the key

management part of the challenge involved in setting up a secure and manageable cryptographic

environment.

In today's issue of APIs by Example, I provide CL command interfaces to some of these APIs, with

the intention of extending their immediate employment and usefulness, as well as discussing the API

functions and the implications of their use. With that in mind, here are the Load Master Key Part

(LODMSTKP) and Set Master Key (SETMSTK) commands.

The built-in support of cryptographic key management provided by release V5R4 provides the

facilities required to establish a key hierarchy. In my previous articles on this topic I have discussed

the purpose of a key hierarchy in detail, but here's a brief recap of the basics of a three-tier

hierarchical key management system:

1. Encrypting sensitive data only protects the encrypted data as long as the data encryption key is

not compromised or revealed. Fundamentally this is no different than the object security we

commonly rely on when setting up data protection; if you can get at the key, you can get at the

data. So obviously you will want to avoid storing data encryption keys in clear text.

2. A key encryption key (KEK) secures the data encryption key. Each KEK can be used to encrypt

a group of data encryption keys. To reduce the risk and exposure in case of a KEK being lost or

compromised, it makes good sense not to protect all data keys under the same KEK.

3. To protect the KEK and further reduce the number of keys to keep secret, the KEK is

encrypted under a master key, the top level in the key hierarchy. Now your only challenge is to

keep the master key secret, and as you will see in a moment, IBM has employed a pretty

simple and yet ingenious method of facilitating that requirement.

For a more detailed explanation, see the aforementioned Cryptographic Services APIs articles (links

to these articles are found below).

As of V5R4, the System i is capable of storing and maintaining a total of eight master keys. These

eight master keys are stored in a location, not accessibly by any other external interface than the

Cryptographic Services APIs. Each master key is a 256-bit Advanced Encryption Standard (AES) key

stored as a 32-byte value in the License Internal Code (LIC) area, and has the following noteworthy

properties and aspects:

Page 1 of 7APIs by Example: Cryptographic Key Management - Loading and Setting Master Keys

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-key-ma...

• Each of the eight master keys exists in three versions: new, current, and old. The new version

contains the already entered part(s) of a new master key currently being composed. The

current version is the currently active master key. The old version contains the previous

current version of the master key, and ensures that keys encrypted under this version of the

master key are still recoverable.

• A master key is created from one or more master key parts, loaded individually as passphrases

(text strings). Each passphrase is hashed using the SHA-512 hash algorithm to obtain a 32-

byte hash value. The hash value is then exclusive or'd (XOR) with the current value of the new

version of the master key.

• This process is continued until all key parts have been entered. The sequence in which the

passphrases are entered does not have any significance. At that point, the Set Master Key API

applies a final scramble process to the new key version and moves the resulting master key to

the current key version, as well as the previous current key version to the old version. The

previous old key version is removed from the system.

• When a current key version has been replaced, you should immediately re-encrypt (translate)

all encryption keys encrypted under the (now) old version. Various APIs exist to support that

requirement. But to help the cryptographic functions identify the correct key version until all

encryption keys have been translated, a 20-byte key verification value (KVV) is calculated and

associated with the master key, when it is set.

• When a key is encrypted under a master key and stored in a system key store file, the KVV of

the master key is stored in the key record along with the key value, enabling the system to

locate the correct master key version automatically. If you store a key encrypted under a

master key outside of a system key store, you should ensure that the KVV is stored with it as

well.

• If you perform a cryptographic function using the old master key version, a diagnostic message

conveying the need to translate the key is issued to both the cryptographic API in question and

the QSYSOPR message queue.

• The master keys are not included in any system save operations. The only way to restore a lost

master key, for example in the event of a system recovery, is by re-entering the exact same

passphrase(s) as initially entered when the master key was created. Since identical

passphrases result in identical KVVs, you can also use the KVV to verify that the master key

has been properly restored.

• Each of the Master Key APIs -- Load Master Key Part, Set Master Key, Clear Master Key, and

Test Master Key -- creates a security audit record of type CY with a detailed entry value of M

(Master Key function).

Care and thought is obviously required when deciding how the master key maintenance procedure

should be conducted to establish a safe and secure key management setup. Of course, it is also very

important to properly devise, carefully document, and promptly communicate the procedure to all

parties involved.

Using a hierarchical key management system lets you create each required master key from 2, 3, or

more passphrases entered by as many individuals, so that no single person has the knowledge

required to produce (or recover) the master key. Since all other key encryption and data keys are

encrypted, this solution definitely provides a healthy foundation for implementing a cryptographic

Page 2 of 7APIs by Example: Cryptographic Key Management - Loading and Setting Master Keys

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-key-ma...

key infrastructure and management procedure. From there on, it's up to the individual shop to

perform the appropriate planning and required programming to actually succeed in meeting the

challenge.

To narrow that gap and shorten the jump a bit for you, I've written a couple of CL commands

implementing the Load Master Key Part and Set Master Key functions based on the equivalent APIs.

Here’s the LODMSTK command prompt:

 Load Master Key Part (LODMSTKP)

 Type choices, press Enter.

 Master key ID 1-8

 Passphrase

 Passphrase (to verify)

Specify the master key ID for the master key you want to load a master key part for, enter the

passphrase that should be hashed and added to the current value of the new master key. Repeat the

passphrase to verify it and avoid spelling errors or other mistakes that could make it impossible to

re-create the master key, should the need arise. Refer to the command help text to learn more about

the LODMSTKP command.

Once you have entered all master key parts, the next step is to finalize the setting of the master key.

As mentioned earlier, this step will remove the old version of the specified master key, move the

current version to the old version, and the new version to current version. Following this event, the

new version will be reset to all x'00'. Fully prompted, the SETMSTK command has the following

appearance:

 Set Master Key (SETMSTK)

 Type choices, press Enter.

 Master key ID 1-8

 Output * *, *PRINT, *STMF,

*MSG

 Key verification value file . .

Again, you specify the ID of the master key to set. If no key parts have previously been added, an

error message will be returned. The output parameter defines where the KVV associated with the

new master key will be returned. The following options apply:

* Displays the 20 byte KVV value in hexadecimal format in a

display panel. Due to the

 formatting the KVV will occupy 40 bytes. From the display

Page 3 of 7APIs by Example: Cryptographic Key Management - Loading and Setting Master Keys

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-key-ma...

panel function key F21 allows

 you to print the information.

*PRINT Prints the 20 byte KVV value in hexadecimal format to a

spooled file and places

 the file in the job’s current default output queue. Due to

the formatting taking place

 the KVV will occupy 40 bytes.

*STMF Writes the 20 byte KVV to stream file specified in the key

verification value file path.

*MSG Returns the 20 byte KVV as message data in a completion

message sent to the caller

 of the command. The message will display the KVV in

hexadecimal format, while the message

 data remains unformatted.

Here's an example of how the display panel would look following a successful setting of master key 1:

 Set Master Key

 WYNDHAMW

 04-11-07

 20:26:06

 Master key ID : 1

 Key verification value . . :

C771ED68C7F78F26818E64E986289E67184A01BF

 Press Enter to continue

 F3=Exit F12=Cancel F21=Print master key information

 Master key 1 has been successfully set.

Note that the key verification value has been formatted to 40-hex nibbles to display a recognizable

value. In reality the KVV is received as a 20-byte binary string. Again, the command and display

panel help text reveals all the details.

The Load Master Key Part and Set Master Key APIs both require *ALLOBJ and *SECADM special

authority to run successfully. For this reason, the service program calling these APIs on behalf of the

equivalent CL commands is configured to adopt user profile QSECOFR's authority. Instead, the CL

commands are restricted from being run by unauthorized users by means of function usage

authorization. This topic has also previously been covered in this column, and links to the relevant

articles are provided below, should you be interested in refreshing your memory.

The CBX180M CL program provided to build the LODMSTKP and SETMSTK commands registers a

special and individual user function for the LODMSTKP and SETMSTK commands, respectively. The

user running the CBX180M CL program will be authorized to both commands. Follow the

instructions specified below to create all command objects correctly. Use the following command to

change the two function usage registrations in accordance with your requirements:

 WRKFCNUSG FCNID(CBX_CRYPTO_MASTERKEY*)

Page 4 of 7APIs by Example: Cryptographic Key Management - Loading and Setting Master Keys

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-key-ma...

Be sure that any person given access to the LODMSTKP and SETMSTK commands fully

comprehends the scope and possible consequences of loading and setting master keys before they are

set loose -– here's an excerpt from the two commands' help text aimed at preventing that kind of

mistake from happening:

• Do not attempt to run these commands unless you have been explicitly authorized to do so by

the proper authority in your organization.

• Do not attempt to run these commands unless you have received thorough instructions in

performing this function.

• Failing to comply with the above recommendations could lead to a major loss of critical

production data.

If you are interested in reading more about key management, master keys, and related utilities, look

for upcoming issues of APIs by Example.

Thank you to Beth Hagemeister of IBM for a very helpful support in my research for this article.

This APIs by Example includes the following sources:

CBX180 -- RPGLE -- Cryptographic Key Management - Services

CBX180B -- SRVSRC -- Cryptographic Key Management - Binder source

CBX181 -- RPGLE -- Load Master Key Part - CPP

CBX181H -- PNLGRP -- Load Master Key Part - Help

CBX181X -- CMD -- Load Master Key Part

CBX182 -- RPGLE -- Set Master Key - CPP

CBX182E -- RPGLE -- Set Master Key - UIM Exit Program

CBX182H -- PNLGRP -- Set Master Key - Help

CBX182P -- PNLGRP -- Set Master Key - Panel Group

CBX182V -- RPGLE -- Set Master Key - VCP

CBX182X -- CMD -- Set Master Key

CBX180M -- CLP -- Cryptographic Key Management - Build commands

To create all above objects, compile and run CBX180M. Compilation instructions are found in the

source headers as usual. Note that the two previously published commands -- Add Function

Registration (ADDFCNREG) and Change User Function Usage (CHGUSRFCNU)-- are required for

the master key commands to run successfully and the CBX180M program to compile.

The sources for the two user function commands are included with this article. Links to the articles

explaining these commands in great detail are located at the end of this article. The following sources

are involved:

CBX1401 -- RPGLE -- Add Function Registration - CPP

CBX1401H -- PNLGRP -- Add Function Registration - Help

CBX1401O -- RPGLE -- Add Function Registration - POP

CBX1401V -- RPGLE -- Add Function Registration - VCP

CBX1401X -- CMD -- Add Function Registration

CBX141 -- RPGLE -- Change User Function Usage - CPP

Page 5 of 7APIs by Example: Cryptographic Key Management - Loading and Setting Master Keys

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-key-ma...

CBX141H -- PNLGRP -- Change User Function Usage - Help

CBX141O -- RPGLE -- Change User Function Usage - POP

CBX141X -- CMD -- Change User Function Usage

To create all above objects please follow the compilation instructions in the respective source

headers.

Previously published related articles:

Cryptographic Services APIs: Key Management:

http://www.systeminetwork.com/article.cfm?id=20470

APIs by Example: Cryptographic Services APIs, Part 1:

http://www.systeminetwork.com/article.cfm?id=51236

APIs by Example: Cryptographic Services APIs, Part 2:

http://www.systeminetwork.com/article.cfm?id=51786

APIs by Example: Cryptographic Services APIs, Part 3:

http://www.systeminetwork.com/article.cfm?id=51863

APIs by Example: Cryptographic Services APIs, Part 4:

http://www.systeminetwork.com/article.cfm?id=51962

APIs by Example: Cryptographic Services APIs, Part 5:

http://www.systeminetwork.com/article.cfm?id=52017

APIs by Example: Cryptographic Services APIs, Part 6:

http://www.systeminetwork.com/article.cfm?id=52119

APIs by Example: Cryptographic Services APIs, Part 7:

http://www.systeminetwork.com/article.cfm?id=52224

APIs by Example: User Function Registration APIs, Part 1:

http://www.systeminetwork.com/article.cfm?id=51361

APIs by Example: User Function Registration APIs, Part 2:

http://www.systeminetwork.com/article.cfm?id=51418

APIs by Example: User Function Registration APIs, Part 3:

http://www.systeminetwork.com/article.cfm?id=51525

Other related documentation:

IBM -- Cryptographic Services Master Keys:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qc3MasterKeys.htm

Wikipedia -– Key Management:

http://en.wikipedia.org/wiki/Key_management

Wikipedia -- SHA Hash Functions:

http://en.wikipedia.org/wiki/SHA-1

This article demonstrates the following Cryptographic Services API:

Load Master Key Part (Qc3LoadMasterKeyPart) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qc3ldmkp.htm

Set Master Key (Qc3SetMasterKey) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qc3setmk.htm

Page 6 of 7APIs by Example: Cryptographic Key Management - Loading and Setting Master Keys

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-key-ma...

Key Management APIs:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/catcrypt6.htm

Cryptographic Services APIs:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/catcrypt.htm

You can retrieve the source code for this API example from:

http://www.pentontech.com/IBMContent/Documents/article/55862_410_MasterKeys.zip.

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-cryptographic-key-

management-loading-and-setting-master-keys

Page 7 of 7APIs by Example: Cryptographic Key Management - Loading and Setting Master Keys

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-key-ma...

