
print | close

APIs by Example: Locating and Working with Module
Imports

System iNetwork Programming Tips Newsletter

Carsten Flensburg

Carsten Flensburg

Thu, 10/23/2008 (All day)

In response to the Work with Service Program References (WRKSPGREF) command that I provided

in the September 25, 2008, installment of APIs by Example, I received a note from a reader asking

for a similar tool that finds the programs or service programs that import a given procedure. Such a

tool would be helpful if you need to alter the procedure interface in a way that would be incompatible

with the current interface or if you want to perform an impact analysis given a requirement to

remove or replace a procedure.

I welcome suggestions or ideas for new API-driven commands and utilities! When I receive a

suggestion based on actual business need, I'm inspired to try to come up with a new API example. So

I quickly envisioned a new Work with Program Import (WRKPGMIMP) command and embarked on

the initial steps involved in the design of such a utility.

However, during my initial research, I realized that no direct way exists to examine the program or

service program object and identify the procedures a module imports. However, if the module object

still exists and remains unchanged, it is possible to establish the required reference between program

and procedure.

The requirement of keeping the module around and intact potentially reduces the usefulness of the

WRKPGMIMP command. For example, programs created by using a Create Bound (CRTBNDxxx)

command, such as CRTBNDRPG, will do their the binding against a temporary module object in

QTEMP, and therefore there's no module object when you want to run WRKPGMIMP. So I added an

option to the WRKPGMIMP command to help you locate all programs and service programs that

contain modules that no longer exist or modules that are out of date (i.e., the source has been

changed since the module was created). To take advantage of this option, you must specify the

special value *VFYMODREF for the WRKPGMIMP command's IMPORT parameter.

But let me start out with a brief discussion of the module anatomy of ILE programs and service

programs. Both program types can be created from one or more modules all together making up the

final program object. For programs, one module will provide the program entry module, and this is

the one specified on the Create Program (CRTPGM) command's Entry module (ENTMOD)

parameter. This parameter by default points to the *FIRST module specified for the command's

module list (MODULE) parameter. For service programs, no single entry point exists, as each

exported subprocedure effectively constitutes an individual entry point.

To see the name of the entry module for a program object named CBX001 in library QGPL, run the

command:

DSPPGM PGM(QGPL/CBX001) DETAIL(*BASIC)

Page 1 of 6APIs by Example: Locating and Working with Module Imports

04-04-2014http://iprodeveloper.com/print/application-development/apis-example-locating-and-w...

To see all subprocedures and data items exported from a service program named CBX101 in library

QGPL, run the command:

DSPSRVPGM SRVPGM(QGPL/CBX101) DETAIL(*PROCEXP)

A detailed discussion of how to control a service program's exports through binder language was

provided in the previous APIs by Example. I've provided a link to that article at the end of this article.

Just as service programs can make exported procedures available to other programs or service

programs, so can a module. All subprocedures in a module specifying the procedure interface

keyword EXPORT can be resolved by the binding process when a program or service program is

created and the module in question is specified on the create command's MODULE parameter. To

see what procedures and data items are exported from a module named CBX001 in library QGPL,

run the command:

DSPMOD MODULE(QGPL/CBX001) DETAIL(*EXPORT)

Likewise, all modules also have the option of importing subprocedures or data items that are

employed by the module. When the module is created, all subprocedures or data items not resolved

from the module itself are listed as part of the module's imported unresolved symbols array. These

imports must be resolved at the point at which the modules are bound into a program or service

program, unless OPTION(*UNRSLVREF) is specified on the Create Program command. To see what

unresolved import symbols are defined for a module object named CBX001 in library QGPL, run the

command:

DSPMOD MODULE(QGPL/CBX001) DETAIL(*IMPORT)

The program binding process examines all modules' unresolved imports and attempts to resolve

these by checking all modules and service programs submitted by the program creation command

and specified explicitly by qualified name or implicitly through binding directories. As for the latter,

some system binding directories are automatically present through the compiler, whereas other

binding directories can be specified on the Create Program command or in the header specifications

(H-spec) in the individual modules. To see what binding modules apply to a module named CBX001

in library QGPL, run the command:

DSPMOD MODULE(QGPL/CBX001) DETAIL(*REFSYSOBJ)

You'll see a list of binding directories, either included by the compiler or defined in the module's

H-specification. Finally, and this is as close as we get to imported procedures by means of the

program object, the program object will define all service program references resolved during the

program binding process. All resolved imports will be found in either the program's module listing or

the program's service program listing. To see what modules are bound into a program object named

CBX001 in library QGPL, run the command:

DSPPGM PGM(QGPL/CBX001) DETAIL(*MODULE)

And to see what service programs are referenced, in terms of imports resolved from each listed

service program, for the same program, run the command:

DSPPGM PGM(QGPL/CBX001) DETAIL(*SRVPGM)

However, although this command tells you which modules and service programs a given program

uses, it does not tell you which procedures are called in those service programs or modules. For

Page 2 of 6APIs by Example: Locating and Working with Module Imports

04-04-2014http://iprodeveloper.com/print/application-development/apis-example-locating-and-w...

example, if I find myself in a situation in which I need to uncover which programs or service

programs import a specific subprocedure, I will be able to do so only by using the original module

object as a bridge between the programs and the procedure. In other words; I will need to employ a

number of APIs to perform the following lookup process:

1. Call the Open List of Objects API (QGYOLOBJ) to list all programs and service programs

identified by the WRKPGMIMP command's REFPGM parameter.

2. For each program and service program found, list all modules bound into the program or

service program by using the List ILE Program Information (QBNLPGMI) API and the List

Service Program Information (QBNLSPGM) API, respectively.

3. For each bound module, perform the following verification and investigation process:

a. Check the module object existence using the Retrieve Object

Description (QUSROBJD) API.

b. If a) is passed, verify the module source level against the

corresponding data recorded

 into the program object by using the Retrieve Module

Information (QBNRMODI) API.

c. If b) is passed, retrieve and process the module import

symbol list by using the List

 Module Information (QBNLMODI) API and match each import

symbol name and type against

 the symbol name and type specified as the WRKPGMIMP command's

IMPORT parameter.

4. If c) produces a match, program and module information is included in the WRKPGMIMP

command's work-with list.

Note, that if the aforementioned value *VFYMODREF is specified for the WRKPGMIMP command's

IMPORT parameter, only modules failing either test a) or b) are included in the work-with list.

Here's the WRKPGMIMP command's prompt panel:

 Work with Program Import (WRKPGMIMP)

 Type choices, press Enter.

 Imported symbol name

 Import symbol type *PROC *PROC, *DATAITEM

 Import program Name, generic*,

*ALL

 Library *LIBL Name, *LIBL,

*CURLIB...

 Import program type *ANY *ANY, *PGM,

*SRVPGM

Page 3 of 6APIs by Example: Locating and Working with Module Imports

04-04-2014http://iprodeveloper.com/print/application-development/apis-example-locating-and-w...

 Sort order *OBJLIB *OBJLIB, *TYPOBJ,

*LIBOBJ...

 Output * *, *PRINT

You specify the name of the procedure or data item to which you want to want to find all program

references as the primary parameter and the symbol type as the secondary. Please note that the

symbol name is case sensitive, as are import symbol names. Next, you enter the generic name and

library qualification of the relevant selection of programs and service programs whose modules you

want to list and check for unresolved imports. Using the special name value *ALL and one of the

special values available for library qualification, you can potentially list and examine a lot of

programs and service programs. This could of course lead to an extensive use of system resources so,

if possible, narrow the selection range as much as feasible.

You can also specify only one program type to be included in the array of programs to examine as

well as specify a variety of sort orders for the produced list. Finally, you can choose to print the

program list instead of displaying a work-with panel. The available online help text offers more detail

about the command and its parameters. When I run the following command on my system:

 WRKPGMIMP IMPORT(GETSYSVAL)

 SYMTYP(*PROC)

 IMPPGM(QGPL/CBX*)

 IMPPGMTYP(*ANY)

 ORDER(*OBJLIB)

 OUTPUT(*)

I'm presented with the following work-with panel:

 Work with Program Import

 WYNDHAMW

 18-10-08

 15:31:15

 Import symbol : GETSYSVAL

 Symbol type : *PROC

 Type options, press Enter.

 2=Update 4=Delete program 5=Display program 6=Display

module

 7=Work with PDM 8=Program reference 9=Module reference

 Program Module Module

 Opt Name Library Type Name Library

Status

Page 4 of 6APIs by Example: Locating and Working with Module Imports

04-04-2014http://iprodeveloper.com/print/application-development/apis-example-locating-and-w...

 CBX101 QGPL *PGM CBX101 QGPL

 *IMPSYMFND

 CBX102 QGPL *PGM CBX101 QGPL

 *IMPSYMFND

 CBX103 QGPL *PGM CBX101 QGPL

 *IMPSYMFND

 CBX110 QGPL *PGM CBX110 QGPL

 *IMPSYMFND

 CBX123 QGPL *PGM CBX123 QGPL

 *IMPSYMFND

 CBX125 QGPL *PGM CBX125 QGPL

 *IMPSYMFND

 CBX130 QGPL *PGM CBX130 QGPL

 *IMPSYMFND

 More...

 Parameters or command

 ===>

 F3=Exit F4=Prompt F5=Refresh F9=Retrieve F11=Display

program text

 F12=Cancel F17=Top F18=Bottom F22=Display entire import

symbol

Using the function key F11, you can toggle between different types of program and module

information. A number of list options are included to execute various commands against the found

programs and service programs. The list of available commands includes UPDPGM/UPDSRVPGM,

DLTPGM/DLTSRVPGM, DSPPGM/DSPSRVPGM, DSPMOD, WRKMBRPDM, and DSPPGMREF.

Again, you have online help text available to explain the list panel, columns, options, and function

keys.

This APIs by Example includes the following sources:

CBX197 -- RPGLE -- Work with Program Import - CPP

CBX197E -- RPGLE -- Work with Program Import - UIM Exit

CBX197H -- PNLGRP -- Work with Program Import - Help

CBX197P -- PNLGRP -- Work with Program Import - Panel Group

CBX197V -- RPGLE -- Work with Program Import - VCP

CBX197X -- CMD -- Work with Program Import

CBX197M -- CLP -- Work with Program Import - Build Command

To create all these objects, compile and run CBX197M, following the instructions in the source

header. As always, you'll also find compilation instructions in the respective source headers.

Previously published related APIs by Example article:

APIs by Example: Identifying and Working with Service Program References

http://systeminetwork.com/article/apis-example-identifying-and-working-service-program-

references

Page 5 of 6APIs by Example: Locating and Working with Module Imports

04-04-2014http://iprodeveloper.com/print/application-development/apis-example-locating-and-w...

IBM documentation:

System i ILE Concepts V6R1:

http://publib.boulder.ibm.com/infocenter/systems/topic/books/sc415606.pdf

Redbook: Moving to Integrated Language Environment for RPG IV:

http://www.redbooks.ibm.com/redbooks/pdfs/gg244358.pdf

This article demonstrates the following Program and CL Command APIs:

Retrieve Module Information (QBNRMODI) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qbnrmodi.htm

List Module Information (QBNLMODI) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qbnlmodi.htm

Retrieve Program Information (QCLRPGMI) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qclrpgmi.htm

List ILE Program Information (QBNLPGMI) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qbnlpgmi.htm

List Service Program Information (QBNLSPGM) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qbnlspgm.htm

You can retrieve the source code for this API example from:

http://www.pentontech.com/IBMContent/Documents/article/57348_710_WrkPgmImp.zip

Source URL: http://iprodeveloper.com/application-development/apis-example-locating-and-

working-module-imports

Page 6 of 6APIs by Example: Locating and Working with Module Imports

04-04-2014http://iprodeveloper.com/print/application-development/apis-example-locating-and-w...

