APIs by Example: Crypto Key Mgmt-Encrypt/Decrypt with Key Hierarchy Page 1 of 11

ﬂ print | close

APls by Example: Crypto Key Mgmt-Encrypt/Decrypt with
Key Hierarchy

System iNetwork Programming Tips Newsletter

Carsten Flensburg
Carsten Flensburg
Thu, 04/24/2008 (All day)

If you have followed the APIs by Example articles covering cryptographic key management in general
and the new key management APIs introduced with release V5R4 in particular, you should now be
able to establish a three-tier cryptographic key hierarchy that lets you create and manage master
keys, key encryption keys, and data keys. For anyone needing to read up on this exciting topic, I've
provided links to all previous articles below.

One important part is still missing in this exercise, however: How to actually put this key hierarchy to
practical use in a common application context. For this purpose, I have created a couple of CL
commands that act as an interface to creating and changing customer data records stored in a
physical data file: Add Customer Record (ADDCUSRCD) and Change Customer Record
(CHGCUSRCD). The scenario prompting the encryption efforts is the following: One of the fields in
the customer file contains information of a highly sensitive and confidential nature, and it is
therefore required that the data stored in this field be stored in an encrypted format.

To begin today's journey, however, let me briefly describe the setup required to implement a three-
tier cryptographic key hierarchy involving the new V5R4 key management facilities:

1. You load and set one or more (up to a maximum of 8) master keys, using the Load Master Key
Part (LODMSTK) and the Set Master Key (SETMSTK) commands, respectively.

2. You create a key encryption key store using the Create Key Store (CRTKS) command,
assigning the master key ID of the master key that the system will use to encrypt all keys as
they are stored in the key store. Likewise, the system will use that master key ID to decrypt the
keys when they are retrieved from the key store.

3. You generate and add a key encryption key to the newly created key store using the Generate
Key Record (GENKR) command. To uniquely identify the key encryption key, you specify a
key label name for the equivalent parameter on the GENKR command. The GENKR command
also offers a variety of key attributes and properties to be defined, as dictated by your specific
requirements.

4. You create a data key store using the Create Data Key Store (CRTDTAKS) command. You
specify a key encryption key store, as well as a key encryption key label, referring to the key
encryption key, that you want to be used for the encryption of all data keys in the data key
store.

5. You add a data encryption key to the newly created data key store using the Create Data Key
(CRTDTAK) command. Again you specify a key label name to identify the data key record as

http://iprodeveloper.com/print/rpg-programming/apis-example-crypto-key-mgmt-encr... 03-04-2014



APIs by Example: Crypto Key Mgmt-Encrypt/Decrypt with Key Hierarchy

Page 2 of 11

well as the key length. The Advanced Encryption Standard (AES) algorithm is used for all key
encryption key and data encryption key operations performed by the CRTDTAK command.

At the end of this article, I provide links to the previous APIs by Example articles introducing and
delivering the commands mentioned above. Here's an example of how the above prerequisite set of
commands (2-5) could be executed; I've placed the key stores in library QGPL, but you can of course
change that to whatever library you prefer:

2. CRTKS KEYSTORE (QGPL/CBX192)

KEYID (1)

3. GENKR KEYSTORE (QGPL/CBX192)
RCDLABEL (CBX_KEK_0001)

KEYTYPE (*AES)
KEYSIZE (16)

4. CRTDTAKS DTAKS (QGPL/CBX192)
KEKKS (QGPL/CBX192)

5. CRTDTAK

KEKLABEL (CBX KEK 0001)

DTAKS (QGPL/CBX192)

KEYLABEL (CBX DTAK 0001)

LENGTH (16)
KEY1 (*GEN)
KEY2 (*GEN)

When you've successfully completed the setup described above, the foundation and encryption key
infrastructure necessary to encrypt and decrypt data will be in place on your system. The remaining
part concerns the controlling and execution of the actual data encryption and decryption process.
The first issue to address is the control data file, preserving the identity of the data encryption key,
defined by key label and qualified key store name, to be used in the customer data encryption and
decryption process. Because this sample application involves the creation of customer records, I've
also included a Last customer number field to help me assign unique customer numbers as I create
new customer records. Here's the outcome of my efforts:

Field

Display File Field Description

WYNDHAMW
13:08:57
File CBX1921F
Library QGPL
Record format . : CBX1921R
File type PF
Access path *ARRIVAL

Data type Buffer

Length

Record length

Field count

Dig

Dec

Key

Text

20-04-08

60

http://iprodeveloper.com/print/rpg-programming/apis-example-crypto-key-mgmt-encr... 03-04-2014



APIs by Example: Crypto Key Mgmt-Encrypt/Decrypt with Key Hierarchy Page 3 of 11

KEYLBL Char 1 32 Key label

KEYSTO Char 33 10 Key store

KEYLIB Char 43 10 Key store
library

LSTCUS Zoned 53 8 8 0 Last
customer number

As you will note if you inspect the CBX192 service program included today, I've made the above
information accessible through subprocedures. This approach enforces encapsulation of the file
access, as well as simplifies the retrieval of the file data for the programs requiring the information
stored in the file. The CBX192 service program also contains the subprocedures performing the
retrieval and update services of the customer file records. Here's the simple customer file record
layout:

Display File Field Description
WYNHAMW
20-04-08

13:10:11

File . . . . . . : CBX1922F Record length . : 136

Library . . . : QGPL Field count . . : 9

Record format . : CBX1922R

File type . . . : PF

Access path . . : *KEYED

Field Data type Buffer Length Dig Dec Key Text

CUSNBR Packed 1 5 8 0 1 A Customer
number

CUSNAM Char 6 30 Customer
name

CUSADR Char 36 30 Customer
address

CUSCTY Char 66 20 Customer
address

CUSZIP Char 86 5 Zip code

CUSSTT Char 91 2 State

CUSPHO Char 93 12 Phone

CUSSSN Char 105 16 Social
Security Number

ENCRIV Char 121 16

Initialization vector

http://iprodeveloper.com/print/rpg-programming/apis-example-crypto-key-mgmt-encr... 03-04-2014



APIs by Example: Crypto Key Mgmt-Encrypt/Decrypt with Key Hierarchy Page 4 of 11

The first seven fields in the CBX1922F customer file contain information that in this context has been
deemed nonsensitive and therefore will be stored in the file in clear text. The customer's Social
Security number (SSN) however, I do not want to be immediately accessible. The regular and
intensive use of query products, interactive SQL, ODBC and JDBC integration to PC clients and other
facilities providing easy database access and extraction options prompts early and careful
consideration when planning database encryption requirements. And in this case, an SSN falls within
the category of data to which you will probably want to control both access and manipulation.

An SSN by definition occupies 9 digits. Because I use the AES algorithm and an encryption block size
of 16 bytes in this example, I need to define the SSN field size as 16 bytes, because the field size
required to store the AES encrypted data basically must always be an even multiple of the AES
encryption block size.

The 16-byte field size also leaves room for the padding performed by the AES encryption algorithm.
Because of this padding, you must always reserve at least one byte within the encryption block size
multiple to allow for padding to occur. If, for example, the data to be encrypted occupied the full 16-
byte block size, AES would have added another full block of padding, resulting in a 32-byte-sized
encryption output (cipher) string.

Some encryption algorithms as well as specific algorithm encryption modes enable an equally sized
encryption input and output string, but this aspect of course needs to be taken carefully into account
early on when deciding on encryption algorithms and designing databases.

Another issue to note relates to the definition of the database field to hold the encrypted data. The
encryption algorithm is always applied to the binary value of the data that is processed, so the
cryptographic process sees only the bits that it is operating on, not the signs and characters that
appear to our eyes. That is actually in contrast to the methods and declarations that the database
applies in order to preserve the appearance of characters and signs across character sets and
encoding schemes.

To ensure that a cipher string is not made subject to conversion of any type, I need to tag such fields
with a CCSID value that defines the field's content as a hexadecimal value. This is achieved by
specifying the CCSID() keyword, with the special value 65535, indicating a hexadecimal content for
the relevant fields in the CBX1922F DDS source below. Please note that the CCSID keyword is also
valid for fields defined by SQL DDL statements:

A R CBX1922R

* %

A CUSNBR 8P 0 COLHDG ('Customer number')

A CUSNAM 30A COLHDG ('Customer' 'name')

A CUSADR 30A COLHDG ('Customer' 'address')

A CUSCTY 20A COLHDG ('Customer' 'address')

A CUSZIP 5A COLHDG ('Zip code')

A CUSSTT 2A COLHDG ('State")

A CUSPHO 12A COLHDG (' Phone")

A CUSSSN 16A COLHDG ('Social' 'Security'
'Number"')

A CCSID(65535)

A ENCRIV 16A COLHDG ('Initialization'
'vector')

A CCSID(65535)

http://iprodeveloper.com/print/rpg-programming/apis-example-crypto-key-mgmt-encr... 03-04-2014



APIs by Example: Crypto Key Mgmt-Encrypt/Decrypt with Key Hierarchy Page 5 of 11

A K CUSNBR

As you will note, the CCSID(65535) keyword is specified for both the Social Security Number field
and the Initialization vector field. The latter contains the Initial Chaining Value (or salt) that is
applied to the encryption process in order to avoid patterns emerging in the encrypted data across
file records, so a salt is generated and stored in the Initialization vector field for each file record as it
is created. The data in this field is then used when encrypting or decrypting the SSN. The salt does
not require any confidentiality, but it needs to be protected against conversion of course, because if it
is altered following the data encryption, the data decryption process will fail.

At this point, it is time to present the Add Customer Record (ADDCUSRCD) and Change Customer
Record (CHGCUSRCD) commands, as they are providing the interface to the components and
infrastructure discussed so far. The ADDCUSRCD command prompt displays the following
parameters:

Add Customer Record (ADDCUSRCD)

Type choices, press Enter.

Customer name

Address

City .

State

Zip code

Phone number

Social security number

All the customer data file fields require input, and there's a help text panel group providing a brief
explanation of the command as well as each parameter. The ADDCUSRCD CPP uses the services
provided by the CBX192 service program to encrypt and store the data in the CBX1922F data file.
The customer number assigned to the customer record is returned in the completion message for
future reference.

When the record is created, you can use the CHGCURRCD command to retrieve and alter the
customer data. The CHGCUSRCD command prompt will initially display only the customer number
field, but as soon as the operator enters the relevant customer number and presses Enter, all
customer data is retrieved and displayed. Here's the full command prompt:

http://iprodeveloper.com/print/rpg-programming/apis-example-crypto-key-mgmt-encr... 03-04-2014



APIs by Example: Crypto Key Mgmt-Encrypt/Decrypt with Key Hierarchy Page 6 of 11

Change Customer Record (CHGCUSRCD)

Type choices, press Enter.

Customer number
Customer name
Address

City .

State

Zip code

Phone number .

Social security number .

Again, online help text is provided. To control access to both commands, you'll need to register the
user profiles requiring access to these commands through the function usage facility, and more
specifically to the CBX_CRYPTO_KEY_USAGE special function.

The CBX192M CL program included with this article to create all commands and objects will
automatically register the CBX_CRYPTO_KEY_USAGE special function usage and authorize the
user profile running the CL program to this function. Adding or removing user profiles to the
CBX_CRYPTO_KEY_USAGE special function will change these users' access to running the
ADDCUSRCD and CHGCUSRCD commands accordingly. Here's how you can test that important
part of the game:

Use DFU or some other data file utility to update the CBX1921F control file. Specify the data key
label (in the above example, CBX_DTAK_0001) in the KEYLBL field as well as the key store name
and library in the KEYSTO and KEYLIB fields, respectively. Specify whatever number you want to be
the initial customer number in the field LSTCUS.

1. Run the command ADDCUSRCD to create a customer record.

2. Run the command RUNQRY *N CBX1922F to verify the record has been added and the SSN
encrypted.

3. Run the command CHGCUSRCD, specifying the customer number returned in step 5. You
should now be able to see in clear text the data previously entered. Try to change the data and
repeat this step to verify the change.

4. Run the command WRKFCNUSG FCNID(CBX_CRYPTO_KEY_USAGE) and remove your
function usage authorization: Option 2, specify USER() USAGE(*NONE). Now try to run step
4 again. Remember to reinstate your function usage authorization when your test is complete,
if required.

http://iprodeveloper.com/print/rpg-programming/apis-example-crypto-key-mgmt-encr... 03-04-2014



APIs by Example: Crypto Key Mgmt-Encrypt/Decrypt with Key Hierarchy Page 7 of 11

You can use the following command to locate and change all function usage registrations applying to
the key management utilities delivered with the Cryptographic Key Management articles in this and
previous APIs by Example articles:

WRKFCNUSG FCNID (CBX CRYPTO *)

Given that you've successfully loaded and installed the commands and usage registrations provided
with this and the previous APIs by Example Cryptographic Key Management articles, you should see
a list similar to the one below, following a successful execution of the command above:

Work with Function Usage

Type options, press Enter.

2=Change usage 5=Display usage

Opt Function ID Function Name
CBX CRYPTO KEY MANAGEMENT Cryptographic key management
CBX CRYPTO KEY USAGE Cryptographic key management
CBX CRYPTO KEYRECORD DELETE Cryptographic key record
deletion
CBX CRYPTO KEYSTORE XLATE Cryptographic key store
translation
CBX CRYPTO MASTERKEY CLEAR Clear cryptographic master key
CBX CRYPTO MASTERKEY LOAD Cryptographic master key part
load
CBX CRYPTO MASTERKEY SET Set cryptographic master key
CBX CRYPTO MASTERKEY TEST Cryptographic master key test
Bottom

Parameters for option 2 or command
===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve Fl12=Cancel

F17=Top
F18=Bottom

http://iprodeveloper.com/print/rpg-programming/apis-example-crypto-key-mgmt-encr... 03-04-2014



APIs by Example: Crypto Key Mgmt-Encrypt/Decrypt with Key Hierarchy Page 8 of 11

Use option 2 to add and/or remove users' function usage. As I mentioned, there's more information
on function usage registration prerequisites and requirements in an earlier APIs by Example article,
the one of December 13, 2007 (please follow the link provided below to look up that article).

This APIs by Example includes the following sources:

CBX191 -- RPGLE -- Cryptographic Data Key Management - services
(update)
CBX191B =-- SRVSRC -- Cryptographic Data Key Management - binder

source (update)

CBX192 -- RPGLE -- Customer data - services
CBX192B -- SRVSRC -- Customer data - binder source
CBX1921F -- PF —-— Customer control data
CBX1922F -- PF -- Customer data

CBX1921 -- RPGLE -- Add Customer Record

CBX1921H -- PNLGRP -- Add Customer Record - Help
CBX1921V -- RPGLE -- Add Customer Record - VCP
CBX1921X -- CMD -—- Add Customer Record

CBX1922 -- RPGLE -- Change Customer Record
CBX1922H -- PNLGRP -- Change Customer Record - Help
CBX19220 -- RPGLE -- Change Customer Record - POP
CBX1922V -- RPGLE -- Change Customer Record - VCP
CBX1922X -- CMD —-—- Change Customer Record
CBX192M -- CLP -- Cryptographic Data Key Management - build
commands

To create all these objects, compile and run CBX192M, following the instructions in the source
header. As always, you'll also find compilation instructions in the respective source headers.

Please note that the two previously published commands Add Function Registration (ADDFCNREG)
and Change User Function Usage (CHGUSRFCNU) are prerequisite for the CBX190M program to
compile.

You can get the sources for the two aforementioned user function commands with the download
made available with my previous APIs by Example article of November 8, 2007 -- just follow the link
provided below. Successfully compiling and running the CBX180M CL setup program included with
that article is also prerequisite to running the CBX192M setup program included today.

In a previous article series, I've presented similar commands for the very same purpose of
demonstrating a practical cryptographic programming approach, so in case you've installed the
previous versions of the ADDCUSRCD and CHGCUSRCD commands, the CBX192M setup program
will rename the two commands to ADDCUSRCD2 and CHGCUSRCD2, respectively, to prevent them
from being replaced by the newer versions.

Many of the issues and techniques described and demonstrated in this APIs by Example article and
code have also been discussed in detail in previously published articles. I have included links to these
articles below.

http://iprodeveloper.com/print/rpg-programming/apis-example-crypto-key-mgmt-encr... 03-04-2014



APIs by Example: Crypto Key Mgmt-Encrypt/Decrypt with Key Hierarchy Page 9 of 11

Before commencing any programming projects involving cryptographic requirements, I urge you to
read and comprehend all the articles and also the warnings and recommendations stated therein.
This precaution is especially important before using any of the code provided as part of the APIs by
Example articles, as it is intended only as a starting point for your own efforts in this interesting but
challenging programming discipline.

Previously published related articles:

Cryptographic Services APIs: Key Management:
http://systeminetwork.com/article/cryptographic-services-apis-key-management

APIs by Example, July 21, 2005: Cryptographic Services APIs, Part 1:
http://systeminetwork.com/article/apis-example-cryptographic-services-apis

APIs by Example, November 10, 2005: Cryptographic Services APIs, Part 2:
http://systeminetwork.com/article/apis-example-cryptographic-services-apis-part-2

APIs by Example, December 8, 2005: Cryptographic Services APIs, Part 3:
http://systeminetwork.com/article/apis-example-cryptographic-services-apis-part-

APIs by Example, January 12, 2006: Cryptographic Services APIs, Part 4:
http://systeminetwork.com/article/apis-example-cryptographic-services-apis-part-

APIs by Example, January 26, 2006: Cryptographic Services APIs, Part 5:
http://systeminetwork.com/article/apis-example-cryptographic-services-apis-part-

APIs by Example, February 16, 2006: Cryptographic Services APIs, Part 6:
http://systeminetwork.com/article/apis-example-cryptographic-services-apis-part-6

APIs by Example, March 9, 2006: Cryptographic Services APIs, Part 7:
http://systeminetwork.com/article/apis-example-cryptographic-services-apis-part-

APIs by Example, November 8, 2007: Cryptographic Key Management - Loading and Setting Master
Keys::
http://systeminetwork.com/article/apis-example-cryptographic-key-management-loading-and-

setting-master-keys

APIs by Example, December 13, 2007: Cryptographic Key Management - Testing and Clearing
Master Keys:
http://systeminetwork.com/article/apis-example-cryptographic-key-management-testing-and-

clearing-master-keys

APIs by Example, January 24, 2008: Cryptographic Key Management — Creating and Translating
Key Stores:
http://systeminetwork.com/article/apis-example-cryptographic-key-management-creating-and-

translating-key-stores

APIs by Example, February 28, 2008: Cryptographic Key Management — Creating, Displaying, and
Deleting Key Records:
http://systeminetwork.com/article/apis-example-cryptographic-key-management-%E2%80%93-

creating-displaying-and-deleting-key-records

APIs by Example, March 28, 2008: Cryptographic Key Management - Creating Data Key Stores and
More:

http://iprodeveloper.com/print/rpg-programming/apis-example-crypto-key-mgmt-encr... 03-04-2014



APIs by Example: Crypto Key Mgmt-Encrypt/Decrypt with Key Hierarchy Page 10 of 11

http://systeminetwork.com/article/apis-example-crypto-key-management-creating-data-key-

stores-and-more

IBM documentation:

Scenario: Key Management and File Encryption Using the Cryptographic Services APIs:
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qe3Scenario.htm

Educational White Paper: Protecting i5/0S Data with Encryption:
http://www-03.ibm.com/servers/enable/site/education/abstracts/efbe abs.html

IBM System i Security: Protecting i5/0S Data with Encryption:
http://www.redbooks.ibm.com/Redbooks.nsf/RedpieceAbstracts/sg247399.html?Open

This article demonstrates the following Cryptographic Services API:

Create Key Store (Qc3CreateKeyStore) API:
http://publib.boulder.ibm.com/infocenter/iseries /vsr4/topic/apis/gc3crtks.htm

Generate Key Record (Qc3GenKeyRecord) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/apis/qc3genkr.htm

Encrypt Data (Qc3EncryptData) API:
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qc3encdt.htm

Decrypt Data (Qc3DecryptData) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/apis/qc3decdt.htm

Translate Data (Qc3TranslateData) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/apis/qc3trndt.htm

Generate Symmetric Key (Qc3GenSymmetricKey) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/apis/qc3gensk.htm

Generate Pseudorandom Numbers (Qc3GenPRNs) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/apis/qc3genprns.htm

Create Algorithm Context (Qc3CreateAlgorithmContext) API:
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qc3crtax.htm

Create Key Context (Qc3CreateKeyContext) API:
http://publib.boulder.ibm.com/infocenter/iseries /vsr4/topic/apis/qc3ecrtkx.htm

Destroy Algorithm Context (Qc3DestroyAlgorithmContext) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/apis/gc3desax.htm

Destroy Key Context (Qc3DestroyKeyContext) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/apis/qc3deskx.htm

Retrieve Key Record Attributes (Qc3RetrieveKeyRecordAtr) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/apis/gc3rtvka.htm

Key Management APIs V5R4:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/apis/caterypt6.htm

http://iprodeveloper.com/print/rpg-programming/apis-example-crypto-key-mgmt-encr... 03-04-2014



APIs by Example: Crypto Key Mgmt-Encrypt/Decrypt with Key Hierarchy Page 11 of 11

Cryptographic Services APIs V5R4:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/apis/caterypt.htm

Validation List APIs V5R4:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/apis/sec6.htm

You can retrieve the source code for this API example from:
http://www.pentontech.com/IBMContent/Documents/article/56586 572 KeyHierarchy.zip

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-crypto-key-mgmt-
encryptdecrypt-key-hierarchy

http://iprodeveloper.com/print/rpg-programming/apis-example-crypto-key-mgmt-encr... 03-04-2014



