4/6/2014 Working with IFS Object Locks

B print | close

Working with IFS Object Locks

iPro Developer

Carsten Flensburg
Carsten Flensburg
Tue, 08/28/2012 - 5:00am
APIs by Example

Click here to download the code bundle. 'When you need tolocate the jobs currently holding locks against
a specific object in the library file sy stem QSYS.LIB, you can
immediately dosousing the Work with Object Locks
(WRKOBJLCK) CLcommand. However, we presently have nosimilar command for objects in the IFS. Other
options already exist, though. One is IBM Navigator for i, which includes a GUI that provides access to IFS
objects and lock information. Another option is a virtually undocumented facility based on the Perform
Miscellaneous File Sy stem Functions (QPOFPTOS) APIthat produces a printed list of IFS object lock holders. (For
more information about these options, see the related references in "Find Out More" below.)

Toreport code errors, email iPro Developer

Sometimes, however, speed is of the essence, and running a CL command from a command line clearly
outperforms the aforementioned alternatives. Because both options employ the Retrieve Object References
(QPOLROR) APItoretrieve object lock information, Imade a shortcut to exploit this APItoimplement a Work
with IFS Object Lock (WRKIFSLCK) CL command. Using the code I present in this article also gives you a starting
point to create, for example, a Check IFS Object Lock (CHKIFSLCK) command to verify whether a specific IFS
object is currently in use. You can use the code to write other similar useful CL commands to support a workflow
or process involving the use of IFS objects as well.

QPOLROR's Required Parameters

The QPOLROR API documentation describes the APIinterface in C notation, as Figure 1 shows (for a list of IFS
APIs, see therelated link in "Find Out More").

Figure 1: QPOLROR APl interface written in C

Retrieve Object References (QPOLROR) API

void QPOLROR (

void * Receiver Ptr,
unsigned int Receiver Length,
char * Format Ptr,
Qlg_Path Name T * Path Ptr,

void * Error Code Ptr

) i

Default Public Authority: *USE

Had IBM instead written the QPOLROR interface in the format commonly applied for most APIsin the
Information Center APIsection, you'd have probably seen something along the lines of that in Figure 2.

Figure 2: QPOLROR APl interface written in the common format

Retrieve Object References (QPOLROR) API

Required Parameter Group:

1 Receiver variable Output Char (*)
2 Receiver variable length Input Unsigned binary(4)
3 Format name Input Char (8)

http://iprodeveloper.com/print/rpg-prog ramming /working -ifs-object-locks 1/5

4/6/2014 Working with IFS Object Locks

4 Path name Input Char (*)
5 Error code I/0 Char (*)

Here, Receiver variable defines the storage location where the QPOLROR API places the IFS object lock
information. The second parameter, Receiver variable length, defines the actual amount of space available for the
information returned by the AP, and Format name indicates the requested format of this information. As for the
latter parameter, you have two options: format RORO0100 returns only the most crucial information and
therefore requires less space than format RORO0200, which provides more comprehensive and detailed
information. Let's first look at the RORO0100 format in Figure 3.

Figure 3: ROR0O0100 output format description (Qpol_RORO0100_Output)

Header section with object level information plus offset and length of the following embedded
structure:

Simple Object Reference Types Structure
(Op01 _Sim Ref Types Output)

When embedded in the RORO0100 format, the Simple Object Reference Ty pes Structure will hold returned
information that specifies general lock information for the IFS object defined in the QPOLROR APT’s Path name
parameter. The Simple Object Reference Ty pes Structure is also part of the more detailed lock information
returned when you request the RORO0200 output format (Figure 4).

Figure 4: ROR0O0200 output format description (Qpol_RORO0200_Output)

Header section with object level information plus offsets and lengths of the three following embedded
structures:

Simple Object Reference Types Structure
(Op01_Sim Ref Types Output)

Extended Object Reference Types Structure
(Qp01_Ext Ref Types Output)

Job Using Object Structure
(Qp01 Job Using Object)

Simple Object Reference Types Structure
(Qp0l1_Sim Ref Types_Output)

Extended Object Reference Types Structure
(Op01_Ext Ref Types_ Output)

IBM i NetServer Session Using Object Structure
(Qp01_Session_Using Object Structure)

This structure listing shows the correlation between the different information structures, as well as the use of
the Simple and Extended Object Reference Ty pes structures at both the general IFS object level and the
individual job level. In the former capacity, the lock information returned in the two structures represents the
total number of known references defined by the variouslock ty pes for the IFS object. However, when we embed
these structures within a specific job list entry, the returned lock information represents the number of
references per lock ty pe for the IFS object within that specific job.

Keeping in line with this explanation, the downloadable code accompanying this article includes the RORO0200
output format that has a header section pointing to three substructures, two of which provide IFS object lock
information at two different detail levels. The third substructure—Job Using Object Structure—contains
information pointing toyet another substructure layer, whose information pertains toeach job currently
holding one or more locks on the IFS object. The Job Using Object Structure is a repeating structure, meaning it
hasone entry for each returned job. Tonavigate the structure correctly, Iuse the structure’s Displacement to
Next Job Entry subfield as many times as the RORO0200 header structure’s Jobs Returned subfield indicates, as

http://iprodeveloper.com/print/rpg-prog ramming /working -ifs-object-locks 2/5

4/6/2014 Working with IFS Object Locks

Figure 5 shows.

Figure 5: Using subfield Displacement to Next Job Entry

/Free
pJobUsgObj = $%$Addr (RORO0200) + RORO0200.0fsJobLst;
For 1Idx = 1 to RORO0200.NbrJobRtn;

If JobUsgObj.DplSmpRef > *Zero;
pSmpObjRef = pJobUsgObj + JobUsgObj.DplSmpRef;
EndIf;

If JobUsgObj.DplExtRef > *Zero;
pExtObjRef = pJobUsgObj + JobUsgObj.DplExtRef;
EndIf;

If JobUsgObj.DplNetSvr > *Zero;
pNetSvrRef = pJobUsgObj + JobUsgObj.DplNetSvr;

//-- Process NetServer job list...
EndIf;
//-- Process job usage and object reference structures...

If Idx < RORO0200.NbrJobRtn;
pJobUsgObj += JobUsgObj.DplNxtJobE;
EndIf;
EndFor;

/End-Free

Back in Figure 2, the IFS object Path name parameter must be passed as a Qlg_Path_Name_T structure, which
includes a path name or a pointer toa path name. (For more information about Qlg_Path_Name_T, see "APIs
by Example: Zip and Unzip Files with the New 7.1 Zip API Support.”"Tolearn more about converting a path
name from one Coded Character Set Identifier (CCSID) to another, see "APIs by Example: Conversion of a Path
Name."You'll find both articleslisted in "Find Out More.") Towrap up the discussion of the QPOLROR API
parameter list, I've included the RPG IV prototy pe that implements the QPOLROR APl interface (Figure 6).

Figure 6: RPG IV prototype implementing QPOLROR API interface

**-- Retrieve object references:
D RtvObjRef Pr ExtPgm('QPOLROR')
D RcvVar 65535a Options (*VarSize)
D RcvVarLen 10u 0 Const
D FmtNam 8a Const
D PthStr 5000a Const Options(*VarSize)
D Error 32767a Options (*VarSize)

WRKIFSLCK Command Prompt

Now it's time to look at the purpose of calling the QPOLROR API and extracting the returned IFS object lock
information. Figure 7 displays the WRKIFSLCK command prompt, which accepts an IFS object path as its
primary parameter.

Figure 7: Work with IFS Object Locks (WRKIFSLCK) command prompt

Work with IFS Object Locks (WRKIFSLCK)
Type choices, press Enter.

IFS object .

http://iprodeveloper.com/print/rpg-prog ramming /working -ifs-object-locks 3/5

4/6/2014 Working with IFS Object Locks
output * *, *PRINT

The command's second parameter defines whether the list of jobs currently holding one or more locks on the
specified object should display in a list panel or print with your job’s spooled output. To give you an example of
the former output option, Itan the following command:

WRKIFSLCK OBJ ('/QOpenSys')

Figure 8 shows the resulting list panel, which includes cursor-sensitive help text to explain the different parts of
the panel as well as the list columns, list options, and function keys.

Figure 8: Work with IFS Object Locks list panel

Work with IFS Object Locks WYNDHAMW
14-06-12 21:50:40
Object : /Q0pensSys
Object in use . : *YES 4 Check out user . : *NONE

Type options, press Enter.
5=Work with job 8=Work with job IFS locks 9=NetServer sessions

Current Total Shared Save Attribute
Opt Job User Number Locks Locks Lock Lock
QZLSFILE QUSER 105967 0 0 0 0
QZLSFILE QUSER 105747 0 0 0 0
Bottom

Parameters or command

===>

F3=Exit F4=Prompt F5=Refresh Fe=Work with link Fll=Lock information
F17=Top F18=Bottom F22=Display entire name F24=More keys

Note that in an upcoming installment of APIs by Example, Il provide a new CLcommand that will make
available the Work with job I'FS locks list option. Until that happens, thislist option won't appear in the list
panel. In case the IFS object name exceeds the panel space available, you can use the cursor position and F22
key todisplay the full IFS object name in a window.

How to Compile

Below, you’ll find instructions on how to create the Work with IFS Object Locks command. The following sources
are included with the code download associated with this article:

¢ CBX254—RPGLE: Work with IFS Object Locks - CPP

¢ CBX254E—RPGLE: Work with IFS Object Locks - UIM Exit Program
e CBX254—HPNLGRP: Work with IFS object Locks - Help

¢ CBX254P—PNLGRP: Work with IFS Object Locks - Panel Group

¢ CBX254V—RPGLE: Work with IFS Object Locks - VCP

¢ CBX254X—CMD: Work with IFS Object Locks

http://iprodeveloper.com/print/rpg-prog ramming /working -ifs-object-locks 4/5

4/6/2014 Working with IFS Object Locks
e CBX254M—CLP: Work with IFS Object Locks - Build command

Tocreate all the above command objects, compile and run the CBX254M CL program, following the instructions
in the source header. You’ll also find compilation instructions in the respective source headers of the individual
sources.

Find Out More

"Display File Usage Information"

"Installation of Director 5.10.2 Fails on IBM i5/0S" (this article shows an example of calling QPoFPTOS to list
object locks)

"Renaming or Removing Files from the IFS That Have Invalid Names" (IBM login required)

IBM17.1 Information Center documentation

Allocating Resources

Integrated File Sy stem

Integrated File System APIs

Perform Miscellaneous File Sy stem Functions (QPoFPTOS) API

Retrieve Object References (QPoLROR) API

Articles at iProDeveloper.com

"APIs by Example: Zip and Unzip Files with the New 7.1 Zip API Support"

"APIs by Example: Conversion of a Path Name"

Source URL: http://iprodev eloper.com /rpg-programming /working-ifs-object-locks

http://iprodeveloper.com/print/rpg-prog ramming /working -ifs-object-locks 5/5

