
print | close

APIs by Example: Security APIs - and Transfer of User
Object Ownership

System iNetwork Programming Tips Newsletter

Carsten Flensburg

Carsten Flensburg

Thu, 04/22/2010 (All day)

The Security API topic is one of the most comprehensive in the IBM i Information Center API

section. In release 6.1, the security APIs are divided into eight subcategories, including Security-

related APIs, Digital Certificate Management APIs, User Function Registration APIs, and Validation

List APIs, to mention a few. And each subcategory comprises many APIs. One of the largest groups is

the Security-related APIs, from which I've picked an API for today's issue of APIs by Example.

The API in question was given the rather lengthy name of List Objects a User Is Authorized to, Owns,

or Is Primary Group of (QSYLOBJA) API. The API capacity demonstrated here relates to object

ownership. For a specified user profile the QSYLOBJA API lists all objects owned by the user profile

to a user space. From there on, the object list is processed using the Retrieve Pointer to User Space

(QUSRPTRUS) API and pointer arithmetic. In this API example I use the QSYLOBJA API–produced

object list as the foundation for a CL command that lets you transfer object ownership from one user

profile to another.

The QSYLOBJA API is capable of listing objects in the QSYS.LIB file system and the IFS (i.e., objects

in a library and objects in a directory, respectively). Due to the difference in naming and qualification

of these two types of objects, you will, however, need to do either one or the other when you call the

API. The object type is implied in the return format name, as documented in the following list of

return formats:

• OBJA0100: Each entry contains the object name, library, type, authority holder indicator,

ownership indicator, auxiliary storage pool (ASP) device name of library, and ASP device

name of object.

• OBJA0110: This format only returns path names for objects in a directory. Each entry contains

the offset to the path name, the length of the path name, type, authority holder indicator,

ownership indicator, ASP device name of object, and the path name value.

• OBJA0200: Each entry contains the same information as format OBJA0100 plus the authority

values.

• OBJA0210: This format only returns path names for objects in a directory. Each entry

contains the same information as format OBJA0110 plus the authority values.

• OBJA0300: Each entry contains the same information as format OBJA0200 plus the object

attribute and descriptive text.

• OBJA0310: This format only returns path names for objects in a directory. Each entry

contains the same information as format OBJA0210 plus the attribute and descriptive text.

As for the QSYLOBJA API's remaining parameters, here's an excerpt from the release 6.1 API

documentation in the Information Center documenting the API interface in its entirety:

Page 1 of 5APIs by Example: Security APIs - and Transfer of User Object Ownership

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-security-apis-and-tran...

 Required Parameter Group:

 1 Qualified user space name Input Char(20)

 2 Format name Input Char(8)

 3 User profile name Input Char(10)

 4 Object type Input Char(10)

 5 Returned objects Input Char(10)

 6 Continuation handle Input Char(20)

 7 Error code I/O Char(*)

 Optional Parameter Group:

 8 Request list Input Char(*)

The Qualified user space name designates the user space to which the API output is directed. The

User profile name parameter defines the user profile for which the object list is generated. In the

context of this API, this implies that the user profile is either the object's owner, primary group

profile, or is privately authorized to the object. Which qualification applies is defined by the fifth

parameter, Returned objects, in conjunction with the final and optional parameter, Request list. The

Returned objects parameter allows the following special values to be specified:

 *OBJAUT The list of objects the user is authorized to is

returned.

 *OBJOWN The list of objects the user owns is returned.

 *BOTH The list of objects the user is authorized to and owns is

returned.

 The list of owned objects precedes the list of authorized

objects.

 *REQLIST The values specified in the request list parameter is

used.

At the time the QSYLOBJA API was introduced, only object ownership and object private

authorization were applicable because, at that point, the concept of object primary group had not yet

been implemented. When the object primary group attribute was introduced, the optional Request

list parameter was added as well as the Returned object parameter special value *REQLIST. The

latter indicating that the former would hold the actual values qualifying which object access relations

to include in the API list output.

Consequently the Request list parameter allows for an array of 10-character values to be specified,

thus providing for any combination of the following special values, including the *OBJPGP special

value added to support object primary group qualification:

 *OBJAUT Returns the list of objects the user is authorized to.

 *OBJOWN Returns the list of objects the user owns.

 *OBJPGP Returns the list of objects that the user is the primary

group for.

The object type parameter enables you to limit the list of objects to the specified object type only. For

directory objects, file system object types such as *DIR and *STMF are supported, defining

directories and stream files, respectively. Beyond the *ALLIFS special value targeting all directory

Page 2 of 5APIs by Example: Security APIs - and Transfer of User Object Ownership

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-security-apis-and-tran...

objects, the TFROBJOWN command supports only the *DIR and *STMF special values but is easily

enhanced in case other IFS object types would require individual processing.

The Continuation handle parameter originates in the circumstance that the maximum size of a user

space is 16,776,704 bytes, or approximately 16MB. In the event that the returned list exceeds this

limit, the QSYLOBJA API returns a continuation handle in the Header Section of the data written to

the user space. Specifying this continuation handle on a subsequent call to the API will cause it to

continue the object list where it left off on the previous call, as opposed to a blank continuation

handle leading to the list being built from the top. In essence, what you need to do is keep calling the

QSYLOBJA API and process the object list returned as long as a valid continuation handle is

returned and until the object list is exhausted.

The presence of a valid continuation handle is signaled by the letter "P" in the Information Status

field in the user space generic header section. The letter "P" in this context translates to: "The

information returned in the user space is valid but incomplete," (i.e., Partial). An information status

of "C" indicates that the returned list is valid and complete, while a status of "I" is returned in case

the data in the list is invalid and the continuation handle therefore is undefined.

The header section containing the continuation handle also includes the user profile name actually

used for building the list. If the special value *CURRENT was specified for the User profile name

input parameter, this field will contain the name of the user profile resolved. Additionally a Reason

code is available in the header section, specifying if the choice of return format caused any objects

qualifying for the list to be excluded. This would be the case if for example directory objects were

found but the return format specified support library objects only.

The API error code parameter has been discussed and explained in great detail in articles previously

published, so I've included links to a couple of these at the end of this article. As for the exercise of

processing List API output in a user space, a walkthrough of this procedure is offered in the APIs by

Example article Retrieve Subsystem Entries API to which a link is included below also. To see for

yourself how the pieces fit together, if in doubt, I suggest you run the TFROBJOWN command

processing program CBX214 in the source debugger, while the command is executing.

Speaking of which, the TFROBJOWN command prompt panel has the following appearance,

including a conditional parameter at the end:

 Transfer Object Owner (TFROBJOWN)

 Type choices, press Enter.

 Object type *ALL, *ALLLIB,

*ALLIFS...

 Current owner Name

 New owner Name

 Current owner authority *REVOKE *REVOKE, *SAME

 Omit object type *NONE *NONE, *ALRTBL,

Page 3 of 5APIs by Example: Security APIs - and Transfer of User Object Ownership

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-security-apis-and-tran...

*AUTL...

 + for more values

The Omit object type parameter applies to library objects and is therefore only displayed if the

specified Object type warrants objects of this type to be selected. The Object type parameter, in

addition to regular object types such as *FILE, *PGM, and *DTAQ, supports the following special

values:

 *ALL All objects, both library and directory objects, are

processed

 *ALLLIB All library objects (QSYS.LIB) are processed

 *ALLIFS All directory (IFS) objects are processed

You specify the name of the user profile whose object ownership should be transferred for the

Current owner parameter and the user profile receiving object ownership for the New owner

parameter. The Current owner authority parameter defines whether the current owner should retain

the current private authority to the object, following the ownership transfer. For library objects, you

further have the option of specifying up to 10 object types to omit when performing the object

ownership transfer. The command and all its parameters are also documented in detail in the

accompanying help text panel group.

Here's an example of how it would look if you wanted to transfer all library objects except message

queues and user profiles owned by user profile USERA to user profile USERB:

 TFROBJOWN OBJTYPE(*ALLLIB)

 CUROWN(USERA)

 NEWOWN(USERB)

 CUROWNAUT(*REVOKE)

 OMITTYPE(*MSGQ *USRPRF)

Following the successful execution of the above command, you'll receive a completion message

indicating how many of the selected objects whose ownership were transferred correctly and how

many, if any, objects that failed in the attempt to transfer their ownership.

The TFROBJOWN command, depending on the object type of the object in question, employs the

Change Object Owner (CHGOBJOWN) and the Change Owner (CHGOWN) commands to perform

the ownership transfer and leaves the completion or diagnostic messages issued by these commands

in the job log of the job running the TFROBJOWN command. Using the Display Job Log

(DSPJOBLOG) command, you then have the option of investigating the exact outcome following the

execution of the TFROBJOWN command.

In the event one of the change commands is failing, the diagnostic and exception messages generated

are also returned as diagnostic messages to the caller of the TFROBJOWN command, preceding the

aforementioned completion message.

This APIs by Example includes the following sources:

Page 4 of 5APIs by Example: Security APIs - and Transfer of User Object Ownership

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-security-apis-and-tran...

CBX214 -- RPGLE -- Transfer Object Owner - CPP

CBX214H -- PNLGRP -- Transfer Object Owner - Help

CBX214V -- RPGLE -- Transfer Object Owner - VCP

CBX214X -- CMD -- Transfer Object Owner

CBX214M -- CLP -- Transfer Object Owner - Build command

To create all the TFROBJOWN command objects, compile and run the CBX214M program, following

the instructions in the source header. You can also find compilation instructions in the respective

source headers.

This APIs by Example article is based on a suggestion submitted by Peter Kemp, of Australia. If you

have any ideas or suggestions for me to cover in future APIs by Example articles, please forward

these to me at flensburg@novasol.dk.

Related Articles:

APIs by Example: Retrieve Subsystem Entries API

APIs by Example: Check Object Authority

Getting Started with APIs, Part 2—Error Handling

APIs by Example: Using the ERRC0200 Data Structure

This article demonstrates the following Security APIs:

List Objects a User Is Authorized to, Owns, or Is Primary Group of (QSYLOBJA) API

Security-related APIs

Security APIs

Retrieve the source code for this API example.

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-security-apis-and-

transfer-user-object-ownership

Page 5 of 5APIs by Example: Security APIs - and Transfer of User Object Ownership

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-security-apis-and-tran...

