APIs by Example: The Save to Application API and Exit Program Page 1 of 6

ﬂ print | close

APIs by Example: The Save to Application APl and EXxit
Program

System iNetwork Programming Tips Newsletter

Carsten Flensburg
Carsten Flensburg
Thu, 05/22/2008 (All day)

At first glance, the Save to Application (QaneSava) API looks complicated, and its purpose might
seem unclear. The QaneSava API lets you intercept the save file records generated by one of up to
eight different save commands or APIs. Instead of directing the save records to a save file, the
QaneSava API intercepts and routes the save records to an API-parameter-defined, user-written exit
program. In a moment, I discuss how this is done. In addition, getting direct and immediate access to
the save file records is useful for at least a couple of reasons, which I outline in this article.

Using the QaneSava API, you could transfer the save records to another system or site as the save
process unfolds, instead of having to wait until the save process has completed. Another option
would be to encrypt the save records before storing them on a medium of your choice. The QaneSava
API of course has a counterpart in the QaneRsta (Restore from Application) API, which lets you
reverse the process, bringing the entire save/restore process within reach of your programming
skills. Today, I focus on the save perspective, and to demonstrate the QaneSava API and the related
Save to Application Exit Program, I created the Save Object to Stream File (SAVOBJSTMF)
command.

As T just mentioned, other options for transferring or encrypting a save file already exist. One of the
more straightforward options is the Copy (CPY) command. After a save file is created and the save
process is completed, you could, for example, use the following command to copy the save file
SAVE001 in library QGPL to the QOpenSys file system in the IFS on your machine:

CPY OBJ('/QSYS.LIB/QGPL.LIB/SAVEOQl.FILE')
TODIR('/QOpenSys')
DTAFMT (*BINARY)

This command would produce a stream file in the QOpenSys directory:

Work with Object Links

Directory : /gopensys

Type options, press Enter.

2=Edit 3=Copy 4=Remove 5=Display 7=Rename 8=Display

http://iprodeveloper.com/print/rpg-programming/apis-example-save-application-api-a... 04-04-2014

APIs by Example: The Save to Application API and Exit Program

attributes
11=Change current directory

Opt Object link Type Attribute Text
DIR
DIR
SAVEQOLl.FILE STMF SAVFE

Page 2 of 6

From this point on, you can transfer and process the stream file as you require, as long as you can
reverse the process when you need to copy the stream file back to its save file. To achieve the final
step, run a CPY command like this one:

CPY OBJ('/QOpenSys/SAVEOQL1.FILE')
TOOBJ ('/QSYS.LIB/QGPL.LIB/TESTO01.FILE")
DTAFMT (*BINARY)

If you'd rather pursue the API and exit program route, however, you'll be interested to know that the
details involved in choosing that approach are herein. The QaneSava API has the following
parameter list:

1 Qualified user space name Input Char (20)
2 User space format name Input Char (8)
3 Status format name Input Char (8)
4 Status information Output Char (*)
5 Length of status information Input Binary(4)
6 Error code I/0 Char (*)

The first parameter specifies the name and library of a user space that must contain all the control
information for the save operation. This information is formatted as a data structure named
SVRS0100 and includes such information as the save command or API to be used to generate the
save records, the save command parameters or save API parameter key structure, and a section
called Application data, available to support communication between the program calling the
QaneSava API and the exit program called during the save process.

The name and library of the exit program to be called is also defined by the SVRS0100 data
structure. Here's the manual's description of the SVRS0100 data structure in its entirety:

Offset Type Field
Dec Hex
0 0 BINARY (4) Length of structure
4 4 BINARY (4) Offset to save command parameters
8 8 BINARY (4) Length of save command parameters
12 C BINARY (4) Offset to application data
16 10 BINARY (4) Length of application data
20 14 BINARY (4) Save command type

http://iprodeveloper.com/print/rpg-programming/apis-example-save-application-api-a...

04-04-2014

APIs by Example: The Save to Application API and Exit Program

24
34
44

18
22

CHAR
CHAR

(10)

(
CHAR (

(

(

10
10)
8)
CHAR (*)
)

CHAR (*

Exit program name

Exit program library
Target release

Save command parameters
Application data

The save commands and APIs supported by the QaneSava API are defined by the following list,
which shows all available options at release V5R4 for the Save command type subfield in the

preceding structure:

PN ok ® N

Save (SAV) command
Save Object (SAVOBJ) command

Save Document Library Object (SAVDLO) command
Save Library (SAVLIB) command

Save Changed Object (SAVCHGOBJ) command
Save Object (QsrSave) API
Save Object List (QSRSAVO) API

Save System Information (SAVSYSINF) command

Note that the SVRS0100 parameter structure also contains the name and library of the exit program
to be called during the save process. The name of the parameter structure is submitted as the second
API parameter.

The QanaSave API's third, fourth, and fifth parameters define the name of the status data structure,
the status data structure itself, and the length of the status data structure, respectively. The status
data structure is named SRST0100 and provides a communication area between the QaneSave API
and its caller and contains the following information at release V5R4:

Offset
Dec
0

4

8
12
16
20
24
34
36

Type
Hex

0
4
8
C
10
14
18
22
24

Field

BINARY (4
BINARY (4
BINARY (4
BINARY (4
BINARY (4
BINARY (4
CHAR (10)
CHAR (2)

BINARY (4)

)
)
)
)
)
)

Bytes returned

Bytes available

Transfer time

Transfer block size
Transfer block multiplier
Last block size

User space library used
Reserved

Decimal transfer time

The final and sixth parameter is the standard API error code data structure, which I assume that you
are already familiar with. If you're not, I urge you to read Scott Klement's article titled "A Beginner's
Guide to APIs". This article offers a great introduction not only to the API error code data structure

but to APIs in general.

The QaneSava API has a lot of restrictions, constraints, and subtleties to consider when you code this
API. For example, if the save command is submitted by a prestart job and not in the job that called
the API, some save command parameters are not supported for various reasons, and objects saved by
the QaneSave API can only be restored using the QaneRsta API. All these issues are thoroughly
described in the API documentation, so I'll quit copying the documentation for now and refer you to
the link below, following which you'll find the IBM online V5R4 version of the QaneSava API
documentation.

http://iprodeveloper.com/print/rpg-programming/apis-example-save-application-api-a...

Page 3 of 6

04-04-2014

APIs by Example: The Save to Application API and Exit Program Page 4 of 6

Be sure to also check out the code included with this APIs by Example to see how the pieces fit
together, and feel free to send me any questions that remain following your reading exercise.

So back to the second component in today's utility: The Save to Application Exit Program. As I noted
earlier, you register your exit program in the SVRS0100 data structure, and following a successful
call to the QaneSava program, this exit program gets called in any of the following four operation

types:

1. Start of save process. At this point, the exit program must prepare for the save record transfer,
as for example open a stream file.

2. Transfer of a block of save records. The exit program receives a block of save records as well as
the length of the data block. The exit program can then store the received data as for example
write or append the data to a stream file. This step repeats until all save records are processed.

3. End of save process. The exit program at this point must terminate the process of storing the
save records, and for example, close the stream file.

4. Abnormal end of save process. If anything goes wrong in the cause of the save process, the exit
program is called one final time to allow it to perform cleanup and termination activities, such
as deleting the save records stream file.

The exit program has the following required parameter group:

1 Operation type Input Binary (4)
2 Operation status Output Binary(4)
3 Save data Input PTR (SPP)
4 Length of save data Input Binary (4)
5 Save bytes read Output Binary(4)
6 Qualified user space name Input Char (20)
7 User space format name Input Char (8)

The Operation type parameter specifies which of the preceding four events caused the exit program
to call, and the exit program returns the outcome of the processing performed by the exit program in
the Operation status parameter, which in turn causes the save process to either continue or
terminate.

The third parameter is a space pointer to a block of save records. This parameter is of course passed
only for operation type 2. Together with the Length of save data parameter, these two parameters
enable you to process the save data buffer safely. The sixth parameter is the qualified name of the
user space specified as input to the QaneSava API, and it thereby enables the exit program to share
and exchange information with the API caller via this user space. The format of the data in the user
space is declared by the seventh parameter.

Summing up all the above information leads finally to the SAVOBJSTMF command, which has the
following command prompt appearance:

Save Object to Stream File (SAVOBJSTMF)

Type choices, press Enter.

http://iprodeveloper.com/print/rpg-programming/apis-example-save-application-api-a... 04-04-2014

APIs by Example: The Save to Application API and Exit Program Page 5 of 6

Objects Name, generic*,
*ALL
+ for more values
Library« .« .« .« < Name
Object types *ALL

+ for more values

Stream file

Additional Parameters

Target release *CURRENT *CURRENT, *PRV
Update history *YES *YES, *NO
Save active *NO *NO, *LIB,

*SYNCLIB, *SYSDFN
Save active wait time:

Object locks 120 0-99999, *NOMAX
Pending record changes *LOCKWAIT 0-99999,
*LOCKWATIT...
Other pending changes *LOCKWAIT 0-99999, *LOCKWAIT,
*NOMAX
Save active message queue . . . *NONE Name, *NONE
Library *LIBL Name, *LIBL,
*CURLIB
Output o o . 0 .. *NONE *NONE, *PRINT

The Stream file parameter specifies an existing path as well as a stream file created as part of the
save processing. The stream file will contain all save records after the save is complete. As always, a
help text panel group is included with the command to explain all details and parameters. Apart from

the Stream file parameter, all other parameters work the same way as you’re used to with the Save
Object (SAVOBJ) command.

Please note that if you specify the OUTPUT(*PRINT) keyword for the SAVOBJSTMF command, you
can locate the produced spooled file using the command:

http://iprodeveloper.com/print/rpg-programming/apis-example-save-application-api-a... 04-04-2014

APIs by Example: The Save to Application API and Exit Program Page 6 of 6

WRKSPLF SELECT (*CURRENT *ALL *ALL *ALL *ALL QPSAVOBJ)

Because the save process runs in a separate prestart job, the spooled file is created under the
QPRTJOB special job name and is therefore not owned by the job running the SAVOBJSTMF
command, eventually making it a bit harder to locate.

In the next installment of APIs by example, I show you how to reverse the process and restore objects
using the Restore from Application (QaneRsta) API and the associated exit program.

This APIs by Example includes the following sources:

CBX193H -- PNLGRP -- Save Object to Stream File - Help

CBX193X -- CMD -—- Save Object to Stream File

CBX1931 -- RPGLE -- Save Object to Stream File - CPP

CBX1931V -- RPGLE -- Save Object to Stream File - VCP

CBX1932 -- RPGLE -- Save to Application - Exit program

CBX193M -- CLP -—- Save Object to Stream File - build command

To create all these objects, compile and run CBX193M, following the instructions in the source
header. As always, compilation instructions are in the respective source headers.

This article demonstrates the following Backup and Recovery API and Exit Program:

Save to Application (QaneSava) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/apis/QaneSava.htm

Save to Application Exit Program:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/apis/ XANESAVA.htm

Backup and Recovery APIs V5R4:
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/backi.htm

You can retrieve the source code for this API example from:
http://www.pentontech.com/IBMContent/Documents/article/56711_616_SavObjStmf.zip.

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-save-application-api-
and-exit-program

http://iprodeveloper.com/print/rpg-programming/apis-example-save-application-api-a... 04-04-2014

