
print | close

APIs by Example: Cryptographic Key Management –
Creating, Displaying, and Deleting Key Records

System iNetwork Programming Tips Newsletter

Carsten Flensburg

Carsten Flensburg

Thu, 02/28/2008 (All day)

This column has so far demonstrated a number of cryptographic key management utilities based on

equivalent Cryptographic Services Key Management APIs. Armed with these tools, you can now

establish and manage a cryptographic master key table, as well as create and maintain key store files

whose content is protected by the master keys. Links to the articles delivering and discussing the

LODMSTK, SETMSTK, TSTMSTK, CLRMSTK, CRTKS, and TRNKS CL commands are at the end of

this article, in case you missed any of them.

Today's installment of APIs by Example adds three new CL commands to this cryptographic services

toolset, all providing functionality relating to the cryptographic key records that are the real purpose

of creating master keys and key stores. Say hello to the Generate Key Record (GENKR), Display Key

Record Attributes (DSPKRA), and Delete Key Record (DLTKR) commands. To ease access to all

these cryptographic services commands, I've also included a Cryptographic Services Commands

Menu (CMDCRPSRV).

A cryptographic key record contains all the information about a cryptographic key that is required for

the system to use the key in a cryptographic operation, such as the encryption or decryption of data.

This information includes the key type, the key size as well as the types of cryptographic operations

that the key is not allowed to perform, if any.

And most importantly, the key record stores the actual cryptographic key, encrypted under the

master key assigned to the key store. I explained the concept of key stores and master key protection

in more detail last time -- please follow the link below to that article for more information on this

topic. To ensure a correct recovery of the encrypted cryptographic key, the key record also includes

the Key Verification Value (KVV) identifying the version of the master key that was used for that

encryption.

Two Cryptographic Services APIs can create a key record in a key store. One is the Write Key Record

(Qc3WriteKeyRecord) API, which takes an existing key value and stores it in a key store. The other is

the Generate Key Record (Qc3GenKeyRecord) API, which generates a cryptographic key of a

specified key type and key length, and writes it to a key store in one single operation. That's the API

that I use as the foundation for the Generate Key Record (GENKR) command.

Take a look at the GENKR command prompt, which basically exposes the input parameters of the

Qc3GenKeyRecord API:

 Generate Key Record (GENKR)

Page 1 of 12APIs by Example: Cryptographic Key Management – Creating, Displaying, and Delet...

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-key-ma...

 Type choices, press Enter.

 Key store Name

 Library Name

 Record label

 Key type *MD5, *SHA_1,

*SHA_256...

 Key size 1-4096

 Public key exponent *NONE *NONE, 3, 65537

 Disallowed function *NONE *NONE, *ENCRYPT,

*DECRYPT...

 + for more values

 Cryptographic service provider *SFWCSP *ANYCSP, *SFWCSP,

*HDWCSP

 Cryptographic device name . . . *NONE Name, *NONE

You specify the qualified name of an existing key store and a unique (within the key store) key record

label of up to 32 characters in length as the primary input parameters. The command offers a

selection of 11 different cryptographic algorithms as key type. For each key type, the online help text

provides you with the allowed key length range.

Of particular interest is the disallowed function parameter, which lets you specify up to four

cryptographic operations for which the generated key cannot be used. For example, if a key is

intended solely for the purpose of encrypting data on your system and then exporting it to another

system, you could use this facility to disallow the decryption of the data. Please refer to the help text

for all the details.

Running the following GENKR command will create a 256-bit AES cryptographic key labeled

CRYPTO_AES_PROD_001, available for all cryptographic operations, and store it in the key store

CBX180K in library QGPL:

 GENKR KEYSTORE(QGPL/CBX180K)

 RCDLABEL(CRYPTO_AES_PROD_001)

 KEYTYPE(*AES)

 KEYSIZE(32)

 DISALLOW(*NONE)

Upon successful completion of the GENKR command, you will receive a message confirming the

outcome:

Page 2 of 12APIs by Example: Cryptographic Key Management – Creating, Displaying, and Delet...

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-key-ma...

 Message ID : CBX0031 Severity :

00

 Message type : Information

 Date sent : 23-02-08 Time sent :

17:22:52

 Message : Cryptographic key CRYPTO_AES_PROD_001

successfully

 generated.

 Cause : A cryptographic key was successfully generated

and stored

 under the key record label CRYPTO_AES_PROD_001 in key store

CBX180K in

 library QGPL.

If you at a later point want to confirm the current presence and status of a cryptographic key, the

Retrieve Key Record Attributes (Qc3RetrieveKeyRecordAtr) API comes in handy. As of release V5R4,

you need to know the qualified key store name as well as the key record label to get at this

information, which I'm making easily accessible with the Display Key Record Attributes (DSPKRA)

command:

 Display Key Record Attributes (DSPKRA)

 Type choices, press Enter.

 Key store Name

 Library *LIBL Name, *LIBL,

*CURLIB

 Record label

 Output * *, *PRINT

If you specify the correct information as input to the command, you’ll get a panel similar to the one

below in return:

 Display Key Record Attributes

 WYNDHAMW

 23-02-08

 17:29:52

Page 3 of 12APIs by Example: Cryptographic Key Management – Creating, Displaying, and Delet...

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-key-ma...

 Key Store : CBX180K

 Library : QGPL

 Record label : CRYPTO_AES_PROD_001

 Key type : AES

 Key size : 32

 Master key ID : 1

 Key verification value . . :

9D98E5EC67DC80DF87FBBF481BC46E183A270915

 Disallow functions : *NONE

 Press Enter to continue

 F3=Exit F11=Display character KVV F12=Cancel

 F21=Print key record attributes

Again, full online and cursor sensitive is provided to ensure that you get all the details needed to

document both command and display panel.

At release V6R1, new Cryptographic Services Key Management APIs will be provided to list all key

records in a key store (as well as key store attributes), so at that point you will be able to also write a

Work with Key Records command that shows all a key store's key records, without you having to

remember each key record label.

Page 4 of 12APIs by Example: Cryptographic Key Management – Creating, Displaying, and Delet...

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-key-ma...

From today's delivery of key record commands, only the Delete Key Record (DLTKR) command

remains. Here's what the very simple DLTKR command prompt looks like:

 Delete Key Record (DLTKR)

 Type choices, press Enter.

 Key store Name

 Library *LIBL Name, *LIBL,

*CURLIB

 Record label

To delete a key record, simply specify the qualified key store name and the record label of the key

record you want to dismiss. But be sure to please consult the command help text before attempting

to run this command!

The Delete Key Record API needs *OBJOPR and *DLT authority to the key store containing the key

record in order to successfully remove the key store record. To keep the DLTKR command aligned

with the other critical and potentially damaging cryptographic CL commands I have provided so far,

I've replaced this requirement with function usage authorization. Function usage authorization has

been discussed in detail in previous installments of this column, so please refer to the links below for

more information on this subject.

Any user attempting to run the DLTKR command will require common object authority to the

command as well as be specifically and individually authorized to the

CBX_CRYPTO_KEYRECORD_DELETE function usage that is registered by the CBX187M CL

program included with this article to build the GENKR, DSPKRA and DLTKR commands. The user

running the CBX187M CL program will by default be authorized to the DLTKR command.

Use the following command to locate and change the function usage registrations applying to the key

management utilities delivered with the Cryptographic Key Management articles in previous APIs by

Example articles:

 WRKFCNUSG FCNID(CBX_CRYPTO_*)

If you've loaded and installed the commands and usage registrations provided with this and the

previous APIs by Example articles, you should see a list similar to the one below, following a

successful execution of the command above:

 Work with Function Usage

 Type options, press Enter.

Page 5 of 12APIs by Example: Cryptographic Key Management – Creating, Displaying, and Delet...

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-key-ma...

 2=Change usage 5=Display usage

 Opt Function ID Function Name

 CBX_CRYPTO_KEYRECORD_DELETE Cryptograhic key record

deletion

 CBX_CRYPTO_KEYSTORE_XLATE Cryptograhic key store

translation

 CBX_CRYPTO_MASTERKEY_CLEAR Clear cryptograhic master key

 CBX_CRYPTO_MASTERKEY_LOAD Cryptograhic master key part

load

 CBX_CRYPTO_MASTERKEY_SET Set cryptograhic master key

 CBX_CRYPTO_MASTERKEY_TEST Cryptograhic master key test

 Bottom

 Parameters for option 2 or command

 ===>

 F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel

F17=Top

 F18=Bottom

Use option 2 to add and/or remove users' function usage. For more information on function usage

registration prerequisites and requirements, follow the link to the December 13, 2007, APIs By

Example.

While I was creating and testing the commands for today's article, I came across a quite unexpected

and peculiar behavior of the Retrieve Key Record Attributes and the Delete Key Record APIs (ILE

versions). According to the API documentation both APIs allow the special values *LIBL (Library

list) and *CURLIB (Current library) qualification of the key store parameter.

But according to my tests the aforementioned APIs apparently interpret *CURLIB as *LIBL, at least

the APIs act functionally equivalent to the behavior expected from the library special value *LIBL,

when provided with the library special value *CURLIB.

For some reason it does however not work the other way around. When I specify *LIBL for the

library parameter when calling the APIs in question, the APIs return escape message CPF9DB3

Qualified keystore file name is not valid.

Page 6 of 12APIs by Example: Cryptographic Key Management – Creating, Displaying, and Delet...

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-key-ma...

To get around this issue, I've included code to resolve the actual key store library name when *LIBL

is specified as the key store library qualification. As for the *CURLIB special value, I'm using a

feature that might be documented somewhere, but was brought to my attention by Barbara Morris of

IBM:

By specifying a replacement value of *CURLIB for the *CURLIB special value in the command

definition, the command analyzer will replace the *CURLIB special value with the actual current

library of the job running the command. If the job currently has no current library, library QGPL is

passed to the command processing program. Here's how it looks in the command source source –-

note the replacement value *CURLIB following the special value *CURLIB: That's what does the

trick:

 Q0001: Qual *Name 10

 Min(1)

 Expr(*YES)

 Qual *Name 10

 Dft(*LIBL)

 SpcVal((*LIBL)

 (*CURLIB *CURLIB))

 Expr(*YES)

 Prompt('Library')

As for the funny behavior of the two APIs in question, I'll report my findings to IBM and report back

to you what I find out. Finally, let's take a brief look at the CMDCRPSRV menu that I've created to

keep all my key management commands in one place -– here's what you get when you run the

command GO CMDCRPSRV:

CMDCRPSRV Cryptographic Services Commands

 System:

WYNDHAMW

Select one of the following:

 Master key commands

 1. Load Master Key Part

 LODMSTKP

 2. Set Master Key

 SETMSTK

 3. Test Master Key

TSTMSTK

 4. Clear Master Key

 CLRMSTK

 Key store commands

 11. Create Key Store

Page 7 of 12APIs by Example: Cryptographic Key Management – Creating, Displaying, and Delet...

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-key-ma...

 CRTKS

 12. Translate Key Store

TRNKS

 Key record commands

 21. Generate Key Record

GENKR

 22. Display Key Record Attributes

DSPKRA

 23. Delete Key Record

DLTKR

 More...

Selection or command

===>

F3=Exit F4=Prompt F9=Retrieve F12=Cancel

I’ve already mentioned a couple of V6R1 news in the area of Cryptographic Services APIs, but I

thought I'd use this opportunity to go through other exiting new offerings that I've discovered in my

initial research when the V6R1 Information Center came online recently.

Release V6R1 offers four new cryptographic services key management exit programs that are

triggered by the following four critical key management events, respectively:

• A clear master key operation

• A set master key operation

• A translate key store operation

• A delete key store record operation

The above events could occur either by executing a key management CL command, a key

management API or through the Operations Navigator key management GUI interface. Here’s an

excerpt from the online documentation:

• Clear Master Key (QIBM_QC3_CLR_MSTKEY) is called when the Clear Master Key

(CLRMSTKEY) CL command, the Qc3ClearMasterKey API, or the Clear Master Key GUI

dialog is being used.

• Delete Keystore Record (QIBM_QC3_DLT_KREC) is called when the Remove Keystore File

Entry (RMVCKMKSFE) CL command, the Qc3DeleteKeyRecord API, or the delete action of

the Keystore Contents GUI panel is being used.

Page 8 of 12APIs by Example: Cryptographic Key Management – Creating, Displaying, and Delet...

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-key-ma...

• Set Master Key (QIBM_QC3_SET_MSTKEY) is called when the Set Master Key

(SETMSTKEY) CL command, the Qc3SetMasterKey API, or the set action of the Manage

Master Keys GUI panel is being used.

• Translate Keystore (QIBM_QC3_TRN_KSF) is called when the Translate Keystore File

(TRNCKMKSF) CL command, the Qc3TranslateKeyStore API, or the Translate Keystore GUI

dialog is being used.

Below you'll find an adapted excerpt from the exit point documentation describing the three events

that may cause each exit point to be called:

1. Check:

The exit program is being called before the key management event is taking place. The exit

program should determine if the event is allowed to take place and perform any necessary pre-

processing actions. The exit program should set the Status output parameter value

appropriately.

2. Execute:

The exit program is being called after the key management event has taken place and

completed successfully. The exit program should perform any necessary post-processing

actions.

3. Cancel:

The exit program is being called because another exit program has returned a Status output

parameter value indicating the key management event is not allowed to take place. You may

need to back out pre-processing actions.

One use of the Check event could be to perform the special function usage check that I've added to

my suite of key management CL commands, to control access to these commands. The exit program

approach allows you to keep such a check in one place and at the same time ensure that the check is

always performed, regardless of the interface being used.

Another use of the Execute event is to monitor master key settings, and thereby establish an

automated master key translation procedure for all key stores being assigned the changing master

key.

For further details documenting the Cryptographic Services Exit Programs, follow the link pointing

to the Cryptographic Services APIs V6R1 at the end of this article.

As I mentioned, IBM also introduces a set of native i5/OS key management CL commands at release

V6R1, deeming my attempt to provide some of these commands to be relevant for release V5R4 only.

Hopefully you’ll still find my offering useful as templates for your own programming experience with

the key management APIs that I’m exploiting in my ditto CL commands. To give you a quick

overview of all the new native key management CL commands and provide a short cut to their

detailed documentation, I’ve written up a list of them all at the end of this article, including links to

the V6R1 online documentation.

At V6R1 master keys are now included in the Save System (SAVSYS) save operation, and two new

special purpose master keys have been added to the master key repository:

1. The Auxiliary Storage Pool (ASP) Master Key, which is used for ASP encryption.

Page 9 of 12APIs by Example: Cryptographic Key Management – Creating, Displaying, and Delet...

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-key-ma...

2. The Save/Restore (SAVSYS) Master Key, which is used for encrypting the master keys while

on SAVSYS media.

Again, the links below point to more information about Disk Encryption, Backing Up Encrypted

Auxiliary Storage Pools, and Saving and Restoring Master Keys.

This APIs by Example includes the following sources:

CBX180 -- RPGLE -- Cryptographic Key Management - Services

CBX180B -- SRVSRC -- Cryptographic Key Management - Binder source

CBX180U -- UIM -- Cryptographic Services Commands Menu

CBX185 -- RPGLE -- Create Key Store - CPP (updated version)

CBX187 -- RPGLE -- Generate Key Record - CPP

CBX187H -- PNLGRP -- Generate Key Record - Help

CBX187X -- CMD -- Generate Key Record

CBX188 -- RPGLE -- Display Key Record Attributes - CPP

CBX188E -- RPGLE -- Display Key Record Attributes - UIM Exit Program

CBX188H -- PNLGRP -- Display Key Record Attributes - Help

CBX188P -- PNLGRP -- Display Key Record Attributes - Panel Group

CBX188V -- RPGLE -- Display Key Record Attributes - VCP

CBX188X -- CMD -- Display Key Record Attributes

CBX189 -- RPGLE -- Delete Key Record - CPP

CBX189H -- PNLGRP -- Delete Key Record - Help

CBX189V -- RPGLE -- Delete Key Record - VCP

CBX189X -- CMD -- Delete Key Record

CBX187M -- CLP -- Cryptographic Key Management IV - Build commands

To create all above objects, compile and run CBX187M. As always, you'll also find compilation

instructions in the respective source headers. I've included an updated version of the Create Key

Store (CRTKS) command’s CPP to correct a bug in the earlier version that caused the created key

store files' descriptive text to have a maximum length of 10 bytes. Please download and install the

updated version of the CBX185 program to fix this issue.

Please note that the two previously published commands Add Function Registration (ADDFCNREG)

and Change User Function Usage (CHGUSRFCNU) are prerequisite for the Delete Key Record

(DLTKR) command to run successfully -– as well as for the CBX185M program to compile.

You can get the sources for the two aforementioned user function commands with the download

made available with my previous APIs by Example article of November 8, 2007 -- just follow the link

provided below. Successfully compiling and running the CBX180M CL setup program included with

that article is also prerequisite to running the CBX187M setup program included today.

Previously published related articles:

APIs by Example, November 8, 2007: Cryptographic Key Management - Loading and Setting Master

Keys:

Page 10 of 12APIs by Example: Cryptographic Key Management – Creating, Displaying, and De...

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-key-ma...

http://systeminetwork.com/article/apis-example-cryptographic-key-management-loading-and-

setting-master-keys

APIs by Example, December 13, 2007: Cryptographic Key Management - Testing and Clearing

Master Keys:

http://systeminetwork.com/article/apis-example-cryptographic-key-management-testing-and-

clearing-master-keys

APIs by Example, January 24, 2008: Cryptographic Key Management – Creating and Translating

Key Stores:

http://systeminetwork.com/article/apis-example-cryptographic-key-management-creating-and-

translating-key-stores

IBM documentation:

Educational White Paper: Protecting i5/OS Data with Encryption

http://www-03.ibm.com/servers/enable/site/education/abstracts/efbe_abs.html

i5/OS: Cryptography concepts V5R4:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajc/rzajcconcepts.htm

Cryptographic Services Master Keys V5R4:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qc3MasterKeys.htm

Cryptographic Services Key Store V5R4:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qc3KeyStore.htm

i5/OS: Cryptography concepts V6R1:

http://publib.boulder.ibm.com/infocenter/systems/scope/i5os/topic/rzajc/rzajcconcepts.htm

Cryptographic Services Key Management V6R1:

http://publib.boulder.ibm.com/infocenter/systems/scope/i5os/topic/rzajc/rzajckeymgmt.htm

Disk Encryption V6R1:

http://publib.boulder.ibm.com/infocenter/systems/scope/i5os/topic/rzaly/rzalyencrypt.htm

Backing Up Encrypted Auxiliary Storage Pools V6R1:

http://publib.boulder.ibm.com/infocenter/systems/scope/i5os/topic/rzaiu/rzaiuencryptasp.htm

Saving and Restoring Master Keys V6R1:

http://publib.boulder.ibm.com/infocenter/systems/scope/i5os/topic/rzajc/rzajcsavemasterkey.htm

V6R1 Cryptographic Services Key Management CL Commands:

Add Master Key Part (ADDMSTPART) command:

http://publib.boulder.ibm.com/infocenter/systems/scope/i5os/topic/cl/addmstpart.htm

Set Master Key (SETMSTKEY) command:

http://publib.boulder.ibm.com/infocenter/systems/scope/i5os/topic/cl/setmstkey.htm

Check Master KVV (CHKMSTKVV) command:

http://publib.boulder.ibm.com/infocenter/systems/scope/i5os/topic/cl/chkmstkvv.htm

Clear Master Key (CLRMSTKEY) command:

http://publib.boulder.ibm.com/infocenter/systems/scope/i5os/topic/cl/clrmstkey.htm

Page 11 of 12APIs by Example: Cryptographic Key Management – Creating, Displaying, and De...

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-key-ma...

Add Keystore File Entry (ADDCKMKSFE) command:

http://publib.boulder.ibm.com/infocenter/systems/scope/i5os/topic/cl/addckmksfe.htm

Create Keystore File (CRTCKMKSF) command:

http://publib.boulder.ibm.com/infocenter/systems/scope/i5os/topic/cl/crtckmksf.htm

Display Keystore File Entry (DSPCKMKSFE) command:

http://publib.boulder.ibm.com/infocenter/systems/scope/i5os/topic/cl/dspckmksfe.htm

Generate Keystore File Entry (GENCKMKSFE) command:

http://publib.boulder.ibm.com/infocenter/systems/scope/i5os/topic/cl/genckmksfe.htm

Remove Keystore File Entry (RMVCKMKSFE) command:

http://publib.boulder.ibm.com/infocenter/systems/scope/i5os/topic/cl/rmvckmksfe.htm

Translate Keystore File (TRNCKMKSF) command:

http://publib.boulder.ibm.com/infocenter/systems/scope/i5os/topic/cl/trnckmksf.htm

This article demonstrates the following Cryptographic Services API:

Generate Key Record (Qc3GenKeyRecord) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qc3genkr.htm

Retrieve Key Record Attributes (Qc3RetrieveKeyRecordAtr) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qc3rtvka.htm

Delete Key Record (Qc3DeleteKeyRecord) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qc3dltkr.htm

Key Management APIs V5R4:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/catcrypt6.htm

Cryptographic Services APIs V5R4:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/catcrypt.htm

Key Management APIs V6R1:

http://publib.boulder.ibm.com/infocenter/systems/scope/i5os/topic/apis/catcrypt6.htm

Cryptographic Services APIs V6R1 – Including Exit Point Documentation:

http://publib.boulder.ibm.com/infocenter/systems/scope/i5os/topic/apis/catcrypt.htm

You can retrieve the source code for this API example from:

http://www.pentontech.com/IBMContent/Documents/article/56351_470_CrtDspDelKey.zip.

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-cryptographic-key-

management-creating-displaying-and-deleting-key-recor

Page 12 of 12APIs by Example: Cryptographic Key Management – Creating, Displaying, and De...

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-key-ma...

