4/6/2014 APIs by Example: Exit Points, APls, and Environment Variables

B print | close

APIs by Example: Exit Points, APIs, and Environment Variables

Carsten Flensburg
Thu, 07/18/2013 - 8:30am

Control inquiry and reply messagesin an interactive job—here's how!

From release torelease, IBM adds more exit points tothe IBM i operating system. These exit
points let you create exit programs that the system will call every time the event associated
with the exit point occurs. Sometimes, however, you need to further granulate control of
when to execute an exit program. One option is to employ environment variables at the
individual job level. Environment variables provide a global setting to a job sothat any
program running in the job can access that setting, independent of parameters and call levels.
Although system components create and use some environment variables, you can also define and add
environment variables if y ou need to.

Toadd and retrieve environment variables for a job, you use the appropriate environment variables CL
commands and APIs. In this article, I'll show you how todo this by demonstrating both methods. (The articles
listed in the “Find Out More” section below, provide additional details about environment variables and
associated programming techniques.) For the exit pointsinvolved, Itake advantage of the inquiry handling exit
point (QIBM_QMH_HDL,_INQEXT) and the reply handling exit point (QIBM_QMH_REPLY_INQ). For
instructions on how to create the exit points, see the “How to Compile” section below.

Controlling Inquiry Message Replies

While developing a new utility to extract journal entries and restore those records back into their original file, I
encountered the CPA32B2 inquiry message (“Change of file &1 may cause data tobelost”), which raised my
attention to the inquiry handling and reply handling exit points. This development effort entailed the use of the
new Run SQL Statements (RUNSQL) command in a CL program to execute the SQL statement ALTER TABLE
DROP COLUMN, which was necessary toremove one of the fields in the table.

When a jobisrun interactively, the CPA32B2 message is sent tothe job’s external program queue; the default
inquiry message handling (INOMSGRPY) job attribute of *RQD forces the user toreply tothe message. For a
batch job, the message is automatically replied to by default. Setting the job’sinquiry message handling
attribute to *SYSRPLY returns the reply specified in the system reply list entry for the CPA32B2 message (if
any is defined).

My objective was to control this behavior in an interactive job by using the reply value “I” for the inquiry
message reply, which would drop the column and not prompt the user for a response. To handle inquiry
messages in a batch job, Iwanted tointercept a default value reply of “C” and replace it with the reply value
“I,” and this is exactly what the inquiry handling and reply handling exit points can do.

Inquiry Handling Exit Point Parameters

The inquiry handling exit program is called in an interactive job when an inquiry message has been sent tothe
job’s *EXT message queue and the Display Program Messages screen is about tointerrupt the job to obtain a
reply. The exit program can then send a response to the inquiry message, freeing the interactive user from
having toprovide a reply. The inquiry handling exit point defines the interface in Figure 1 toits exit program.

Figure 1: Parameters defined by the inquiry handling exit point

Required Parameter Group:

1 Type of call Input Binary (4)
2 Qualified message queue name Input Char (20)
3 Message key Input Char (4)

4 Message identifier Input Char (7)

http://iprodevel oper.com/print/application-devel opment/apis-example-exit- points-apis-and-environment-variables 1/6

4/6/2014 APIs by Example: Exit Points, APls, and Environment Variables

Here, the Type of call parameter will alwayshave the value 1—Inquiry needs reply. Similarly, the parameter
Qualified message queue name should always contain the value *EXT; for the current implementation of the exit
point, there are no other options. The Message key parameter provides the unique identifier of the message
that’sheld in the external message queue. And finally, the Message identifier parameter lets you easily evaluate
whether the inquiry message being intercepted isrelevant toyour exit program by interrogating the message
ID value. If you decide tointercept the inquiry message, you must then handle it by sending a reply tothe
inquiry message. To do this, use the Send Reply Message (QMHSNDRM) APIto send the reply value of your
choice. Doing so prevents the inquiry message from displaying and requiring an answer from the user.

If the exit program successfully intercepts and replies tothe inquiry message, an informational message (in this
case, CPI2516, “Reply sent by inquiry handling exit program”) is placed in the job log of the job in which the
inquiry message was issued. To further document the event, CPI2516’s second-level message text contains full
details about the inquiry message, the exit point, and the exit program.

If the CPA32B2 inquiry message is issued in a batch job, the above technique won’t work. To that end, you must
use the QIBM_QMH_REPLY_INQ exit point, which calls the registered exit program at the point where the
inquiry message received a reply. As Imentioned previously, the message system component’s default reply
mechanism typically provides the inquiry reply. The CPA32B2 message, for example, resultsin the reply value
C, causing the ALTER TABLE SQL statement to fail. Toensure that the reply value Iisreturned, you can
register an exit program for exit point QIBM_QMH_REPLY_INQ and have the exit program replace the reply
value with the default reply.

Reply Handling Exit Point Parameters

Figure 2 shows the parameters that the reply handling exit point employs. (For full details, see the exit point
documentation in the “Find Out More” section below.)

Figure 2: Parameters used by the reply handling exit point

Required Parameter Group:

1 Type of call Input Binary (4)
2 Qualified message queue name Input Char (20)
3 Message key Input Char (4)

4 Message identifier Input Char (7)

5 Reply I/0 Char (*)

6 Length of reply I/0 Bin(4)

7 CCSID of reply I/0 Bin (4)

8 Reply action return code Output Bin (4)

The Type of call parameter defines the reason for calling the exit program. You can see the supported valuesin
Figure 3.

Figure 3: QIBM_QMH_REPLY_INQ's Ty pe of call parameter’s supported values

Reply notification—no action allowed
Reply validation requested

Default reply validation requested
Default reply notification

Reply rejected notification

Replaced reply not valid

Reply replaced notification

Reply cannot be sent notification

o U W NP O

For values 0, 4, 5, and 6, parameter 8 (Reply action return code) is ignored.
For values 4 and 7, parameter 5 (Reply) is blank, and parameters 6 and 7 (Length of reply and CCSID of
reply, respectively) are zero.

The Qualified message queue name parameter specifies the qualified name of the message queue containing the
inquiry message, and the Message key parameter identifies the specific inquiry message in that message queue
that needs a reply. Message identifier holds the seven characters of the message ID if the inquiry message is sent
as a predefined message stored in a message file, and it contains blanks if the message is impromptu (e.g., asis
the case with the Send Break Message—SNDBRKMSG—command).

http://iprodevel oper.com/print/application-devel opment/apis-example-exit- points-apis-and-environment-variables 2/6

4/6/2014 APIs by Example: Exit Points, APls, and Environment Variables

The Reply parameter stipulates the reply value for the processed inquiry message. The exit program uses this
parameter tooverride the provided reply value by replacing the input value with the new value. The next two
parameters—Length of reply and CCSID of reply—are also I/O. Finally, the exit program defines the Reply action
return code parameter toindicate whether toreject, accept, or replace the reply. Again, please refer tothe
online exit point documentation for all the details.

When the QIBM_QMH_REPLY_INQ exit program requests toreplace the reply value, a CPD2479 diagnostic
message (“Reply handling exit program requested toreplace a reply value”) islogged in the job that’s
generating the inquiry message. Following a successful replacement of the reply value, the CPF2458 diagnostic
message (“Reply replaced by reply handling exit program”) is added to the job log. Both messages provide
additional information about the event in their second-level message text.

A Clear-Cut Implementation

The exit program implementation for both exit pointsis straightforward. As Imentioned previously, overriding
the CPA32B2 inquiry message should happen only if a certain condition is met—namely, that you’ve defined a
specific environment variable for the job in which the inquiry message is issued. For this purpose, I've defined
the environment variable SQL_VFY_ALTER_IGNORE. If this variable is present and has the value Y, both exit
programs will override and change the reply value of the CPA32B2 inquiry message toIsothat the ALTER
TABLE DROP COLUMN SQL statement can process and complete successfully.

The QIBM_QMH_HDL_INQEXT exit program CBX2611 performs the following steps:

Checks whether the type of call parameter is Inquiry needs reply.

Checks whether the message ID is CPA32B2.

Checks whether the environment variable SQL_VFY_ALTER_IGNORE is defined and the valueisY.
Checks whether the message was sent by system module QDBCHGFI and procedure VFYALTER.

AW N M

If these checks are met, it sends the reply message with the value L

Figure 4 shows the RPG IV code snippets that employ this outline.

Figure 4: The QIBM_QMH_HDI,_ INQEXT exit program code snippets

/Free
If PxTypCall = INQ NEED RPY;
If PxMsgId = 'CPA32B2';
If GetStrval(getenv('SQL VFY ALTER IGNORE')) = 'Y';
RcvPgmMsg (RCVM0300
: %$Size(RCVM0300)
'RCVM0300"
' kEXT '
: *Zero
' *ANY v
: PxMsgKey
: *Zero
: "*SAME'
: ERRCO0100
)i

If ERRCO100.BytAvl = *Zero;
pSndInf = $Addr(RCVM0300.VarDta) + RCVM0300.DtalLenRtn +
RCVMO0300.MsgLenRtn +
RCVMO0300.HlpLenRtn;

If SndInf.SndPgmNam = 'QDBCHGFI' And
SndInf.SndModNam = 'QDBCHGFI' And
SndInf.SndPrcNam = 'VEFYALTER';

SndRpyVal (PxMsgQue g: PxMsgKey: 'I');
EndIf;
EndIf;
EndIf;
EndIf;
EndIf;
/End-Free

http://iprodevel oper.com/print/application-devel opment/apis-example-exit- points-apis-and-environment-variables 3/6

4/6/2014 APIs by Example: Exit Points, APls, and Environment Variables
The QIBM_QMH_REPLY_INQ exit program CBX2612 performs these five steps:

Checks whether the type of call parameter is Default reply notification.

Checks whether the message ID is CPA32B2.

Checks whether the reply length is greater than zeroand the reply valueisC.

Checks whether the environment variable SQL_VFY_ALTER_IGNORE is defined and the valueisY.
If these checks are met, it replaces the reply value with the value L

[9; IS NENCU RN SR

You can see the RPG IV code snippets that implement this outline in Figure 5.

Figure 5: The QIBM_QMH_REPLY_INQ exit program code snippets

/Free
If PxTypCall = DFT RPY NTF;
If PxMsgId = 'CPA32B2';
If PxRpylen > *Zero And
sSubst (PxMsgRpy: 1: PxRpyLen) = SQL VFY CNL;
If GetStrvVal(getenv('SQL VEFY ALTER IGNORE')) = 'Y';
PxMsgRpy = SQL VFY_ IGN;
PxRpyLen = %Len(SQL _VFY IGN);
PxRpyCcsId = JOB CCSID;
PxRtnActCod = RPY_ACT_RPL;
EndIf;
EndIf;
EndIf;
EndIf;
/End-Free

After successfully creating the exit programs (into library QGPL, in this example), you can add them to their
respective exit points by using the following two commands:

AddExitPgm ExitbPnt(QIBM QMH HDL INQEXT)
Format (INQEO0100)
PgmNbr (*LOW)
Pgm(QGPL/CBX2611)
AddExitPgm ExitPnt (QIBM QMH REPLY INQ)
Format (RPYI0100)
PgmNbr (*LOW)

Pgm(QGPL/CBX2612)

Asindicated by the exit program outlines above, the exit programs will handle the CPA32B2 inquiry message
only if you’ve added the environment variable SQL._VFY_ALTER_IGNORE to the current job and specified a
value of Y. Toactivate the new exit programs for the current job, run the following command just before
executing the RUNSQL statement that’s generating the CPA32B2 inquiry message:

AddEnvVar EnvVar (SQL VEFY ALTER IGNORE)
Value(Y)
Level (*JOB)

When the RUNSQL statement has completed, immediately deactivate the new exit programs for the current job
by using the following command:

RmvEnvVar EnvVar(SQL VFY ALTER IGNORE)

Level (*JOB)

Figure 6 shows an example of how to suppress CPA32B2 in a CL program.
Figure 6: CL program suppressing the CPA32B2 inquiry message

http://iprodevel oper.com/print/application-devel opment/apis-example-exit- points-apis-and-environment-variables 4/6

4/6/2014 APIs by Example: Exit Points, APls, and Environment Variables
Pgm (&DtaFil g)

Dcl &DtaFil g *Char 20

Dcl &DtafFil *Char 10 stg(*Defined) Defvar(&DtafFil g 1)
Dcl &DtaLib *Char 10 stg(*Defined) Defvar(&DtaFil g 11)
Dcl &SglStm *Char 1024
AddEnvVar EnvVar(SQL VFY ALTER IGNORE) +
Value(Y) +
Level (*JOB) +
Replace(*YES)
RcvMsg MsgType (*LAST) Rmv(*YES)
ChgVar &SglStm ("ALTER TABLE ' *Cat +
&Dtalib *Tcat '/ *Cat +
&DtaFil *Bcat +

'DROP COLUMN JOESD')

RunSqgl Sgl(&SglStm) Commit(*NONE) Naming(*SYS)

RmvEnvVar EnvVar (SQL VFY ALTER IGNORE) +
Level (*JOB)

RcvMsg MsgType (*LAST) Rmv (*YES)

EndPgm

In addition tothe RUNSQL scenario described previously, the CPA32B2 inquiry message might result from a
DDS-defined physical file that you’ve altered via the CHGPF command. CPA32Bz2 is alsoissued if the CHGPF
command specifies the SRCFILE and SRCMBR parameters, and the source member pointed to modifies the
physical file to an extent that’s incompatible with the current record format in terms of fields omitted or field
attributes changed.

More to Come

The RUNSQL scenario will form the starting point for an upcoming APIs by Example column. In that article, T'll
present a new Extract Journal Data (EXTJRNDTA) command to demonstrate the practical use of the techniques
discussed here. Until then!

How to Compile

Below, you’ll find instructions for creating the exit programs. The following sources are included with the code
download associated with this article:

CBX2611: RPGLE—Inquiry Handling Exit Program—Ignore CPA32B2
CBX2612: RPGLE—Reply Handling Exit Program—Ignore CPA32B2
CBX261M: CLPA—Exit programs—Build and Configure

To create the above exit programs, compile and run the CBX261 M CL program, following the instructions in the
source header. You’ll also find compilation instructionsin the respective source headers of the individual
sources.

Find Out More

“The CL Corner: New Support for CL Commands Lets You Know When a Command Ends”

i Can blog column: “IBM i Security Never Sleeps”

IBMi 7.1 Information Center documentation

Environment Variable APIs

getenv ()—Get Value of Environment Variable

Inquiry Handling Exit Program

http://iprodevel oper.com/print/application-devel opment/apis-example-exit- points-apis-and-environment-variables 5/6

4/6/2014 APIs by Example: Exit Points, APls, and Environment Variables
Job External Message Queue *EXT

Receive Program Message (QMHRCVPM) API

Reply Handling Exit Program

Send Reply Message (QMHSNDRM) API

Using the System Reply List for i5/0S

Articles at iProDeveloper.com:

“APIs by Example: Change and Retrieve Command Exit Points—and Command Exit CL Commands” (March
2010)

“Carsten’s Corner: Analyzing Registered Exit Programs: PRTREGEXIT Revisited” (October 2011)

“Carsten’s Corner: Customizing Spooled File Panels with Spooled File Actions” (September 2010)

“Controlling the Action of the System Request Key and the ATTN Key” (September 2005)

“Query and Change your V5R4 Job Interrupt Status Attribute” (March 2008)

“Retrieve Environment Variablesin CL” (February 2010)

“Taking Control of the Sy stem Request Menu” (October 2005)

“Use Environment Variables for Special Settings” (April 2005)

Source URL: http://iprodev eloper.com /application-development/apis-exam ple-exit-points-apis-and-
environment-variables

http://iprodevel oper.com/print/application-devel opment/apis-example-exit- points-apis-and-environment-variables 6/6

