APIs by Example: Message Handling APIs & Additional Message Info Support Page 1 of 5

ﬂ print | close

APIs by Example: Message Handling APIs & Additional
Message Info Support

System iNetwork Programming Tips Newsletter

Carsten Flensburg
Carsten Flensburg
Thu, 10/22/2009 (All day)

For native IBM i commands such as Work with Writers (WRKWTR), Work with User Jobs
(WRKUSRJOB), Work with Submitted Jobs (WRKSBMJOB), and Work with Active Jobs
(WRKACTJOB), it's possible to reply to pending inquiry messages for the writer or job in question by
means of these commands' list panels' option 7=Display message. The internal IBM program
providing this functionality is called QMHSCLVL and is also employed by other message-related
commands, including Display Messages (DSPMSG), Work with Messages (WRKMSG), and Display
Job Log (DSPJOBLOG). If you run any of these commands and place the cursor on a message and
press F1, you invoke the QMHSCLVL program and see the Additional Message Information panel for
that message.

A couple of the general print APIs include information for writers in a message wait state about the
message queue and message key identifying the actual message waiting for a reply, and with release
6.1 the same information has been made available for jobs in general with some of the job-related
work management APIs. I've including links to the specific APIs at the end of this article. You can
take advantage of these APIs and the information made accessible by them to create your own writer
or job commands and utilities and include message-handling facilities similar to those presented by
IBM's commands. There's, however, currently no API available providing a public and supported
interface to the QMHSCLVL functionality. So that's what today's APIs by Example seeks to redress.

Bruce Vining, former system API lead at IBM, in a discussion a while ago on midrange.com revealed
that IBM actually for some time has been working on providing such an API but that until now other
activities of higher priority have been in the way of a successful completion of that endeavor. So
when I recently encountered a situation calling for a message reply function very much like the one
offered by the QMHSCLVL program, I decided to build my own Additional Message Information
(AMI) function. And because from time to time I've noted some interest for this type of message
support in the System iNetwork forums and elsewhere, I present the outcome here.

I should point out that IBM's QMHSCLVL function supports both program and nonprogram
messages, the former holding messages being sent to a job's program or external message queue and
the latter holding messages being sent to a message queue object of type *MSGQ. This means that
whether you display messages in a message queue or messages from your job's program message
queue or job log, you employ that same function. The intention of the Additional Message
Information function presented here, however, is to support messages sent to message queues only.

Messages being sent to a program message queue can be processed and replied to only from within
the job running the programs issuing the messages, and most often the request for a public and
supported interface to the QMHSCLVL function has to do with the requirement of being able to reply
to messages being sent to a message queue object, typically for writers or jobs hanging in a message

http://iprodeveloper.com/print/rpg-programming/apis-example-message-handling-api... 04-04-2014

APIs by Example: Message Handling APIs & Additional Message Info Support Page 2 of 5

wait condition, waiting for somebody to reply to the message in either the writer's or the operator's
message queue. Adding program message support to the version presented here would be quite
simple, however, given the requirement. Anyway, let's look at the steps and information involved in
creating the Additional Message Information function.

A qualified message queue name and the message key identifying the message to display from the
basic information are needed. Armed with this information you can:

1. use the Receive Nonprogram Message (QMHRCVM) API to retrieve the message text, message
ID, message type, message data, and other relevant message information.

2. use the Retrieve Message (QMHRTVM) API to retrieve and initially format the message's
second-level help text, replacing substitution variables.

3. format the message text and second-level help text for the specific output line width and take
embedded format instructions into proper consideration.

4. display the message information. For inquiry messages, a reply input option is offered.

5. if a reply is entered, use the Send Reply Message (QMHSNDRM) API to send the message
reply and redisplay the message.

As for many of the commands and utilities I've presented earlier in this column, much of the user
dialog is taken care of by the User Interface Manager (UIM) panel group constituting the AMI user
interface. This significantly reduces the coding efforts involved and also ensures consistency in both
appearance and functionality. Below I've included an example of how the Additional Message
Information panel looks when displayed for the CPA7025 inquiry message issued when an attempt is
made to delete a journal receiver that has not been fully saved:

Additional Message Information

Message ID : CPA7025 Severity @ 99
Message type . . . : Inquiry
Date sent : 17-10-09 Time sent
02:00:25
Message : Receiver AUDRCV2856 in QGPL never fully saved.
(I C)
Cause : An attempt was made to delete a receiver that

was never
fully saved after the receiver was detached with a CHGJRN command.

If this message was issued during automatic system cleanup
(through
Operational Assistant options or the STRCLNUP command), then the
journal
receiver AUDRCV2856 in library QGPL was deleted.

Recovery . . . : If the receiver is to be deleted anyway, enter
I to

http://iprodeveloper.com/print/rpg-programming/apis-example-message-handling-api... 04-04-2014

APIs by Example: Message Handling APIs & Additional Message Info Support Page 3 of 5

continue processing, otherwise, enter C to cancel processing.

If this message was issued during automatic system cleanup
(through
Operational Assistant options or the STRCLNUP command), you can
avoid the
message by including the journal receivers in your normal backup
procedures.

More. ..
Reply . . . : I

Press Enter to continue.

F3=Exit Fe=Print F9=Display message details Fl2=Cancel

Function key F9 is cursor sensitive for inquiry messages that have been replied to. If the cursor is
placed on the reply value, Fg will show the message details of the reply message rather than the
inquiry message itself. This way you can quickly determine who replied to the message and when the
reply was sent. Placing the cursor anywhere else will cause the message details of the original
message to be displayed when F9 is pressed. Function key F6 prints the displayed message and the
message details to the current job's output queue. Cursor-sensitive help text is provided to explain all
the AMI panel details.

Compared to the system QMHSCLVL function, I've omitted a couple of function keys, including
F14=Work with problem and F21=Select assistance level. I might include the F14=Work with
problem function key in a later version, but as for assistance level, I find no real value provided in the
distinction between basic and intermediate level implemented in IBM's version, so I've simply
combined what I find the best parts from both. Should you disagree, you of course have the option of
making the appropriate changes in your copy of the source.

To give you an immediate chance to perform a test drive of this homegrown version of the Additional
Message Information (AMI) panel, I've written and included a Display Message Queue (DSPMSGQ)
command with this article, and it lists all entries of a specified message queue that meet the selection
criteria entered, and for each message calls the CBX209 AMI program. Here's the DSPMSGQ
command prompt:

Display Message Queue (DSPMSGQ)

Type choices, press Enter.

Message queue o . . Name

Library < . . *LIBL Name, *LIBL,

http://iprodeveloper.com/print/rpg-programming/apis-example-message-handling-api...

04-04-2014

APIs by Example: Message Handling APIs & Additional Message Info Support
*CURLIB
Message type *ALL *ALL, *INFO,
*COPY
Messages to display first . . . *LAST *LAST, *FIRST
Severity code filter 0 0-99, *MSGQ

*INQ,

Page 4 of 5

The DSPMSGQ command displays the messages found in the specified message queue one by one.
You can use the Message type (MSGTYP) and Severity (SEV) parameters to define the scope of
messages to be displayed. The panel displaying the message details allows you to send a reply to
inquiry messages. Pressing either F3 or F12 from the Additional Message Information display
terminates the message queue processing and returns you to the display where you entered the

DSPMSGQ command. For more details, please consult the command's help text.

This APIs by Example includes the following sources:

CBX209 -- RPGLE -- Additional Message Information

CBX209E -- RPGLE -- Additional Message Information - UIM Exit
Program

CBX209H -- PNLGRP -- Additional Message Information - Help

CBX209P -- PNLGRP -- Additional Message Information - Panel Group
CBX2091 -- RPGLE -- Display Message Queue - CPP

CBX2091H -- PNLGRP -- Display Message Queue - Help

CBX2091V -- RPGLE -- Display Message Queue - VCP

CBX2091X -- CMD -- Display Message Queue

CBX209M -- CLP -- Additional Message Information - Build objects

To create all these Additional Message Information objects as well as the Display Message Queue
command objects, compile and run the CBX209M program, following the instructions in the source
header. As always, the compilation instructions are also included in the respective source headers.

IBM i APIs supporting Message Queue and Message Key Attributes:

Retrieve Writer Information (QSPRWTRI) API

Retrieve Printer Attributes (QGYRPRTA) API

Retrieve Job Information (QUSRJOBI) API (6.1)

Open List of Jobs (QGYOLJOB) API (6.1)

Retrieve Thread Attribute (QWTRTVTA) API (6.1)

IBM documentation:

A Primer on Message Analysis

http://iprodeveloper.com/print/rpg-programming/apis-example-message-handling-api...

04-04-2014

APIs by Example: Message Handling APIs & Additional Message Info Support Page 5 of 5

Understanding What Controls the Automatic Reply Function

This article demonstrates the following message handling APIs:

Receive Nonprogram Message (QMHRCVM) API

Retrieve Message (QMHRTVM) API

Retrieve Nonprogram Message Queue Attributes (QMHRMOQAT) API

Send Reply Message (QOMHSNDRM) API

Send Program Message (QMHSNDPM) API

Resend Escape Message (QMHRSNEM) API

Move Program Message (QMHMOVPM) API

Message Handling APIs

Message Handling Terms and Concepts

Retrieve the source code for this API example.

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-message-handling-apis-
additional-message-info-support

http://iprodeveloper.com/print/rpg-programming/apis-example-message-handling-api... 04-04-2014

