Writing RPG Code Then and Now Page 1 of 7

ﬂ print | close

Writing RPG Code Then and Now

System iINEWS Magazine

Carsten Flensburg

Carsten Flensburg
Wed, 10/01/2008 (All day)

Click here to download the code bundle. [t recently occurred to me that I've been
programming longer than I've done anything

Ise in my professional life. It's scary —
there's still so much to learn and comprehend, and so many hard-acquired skills seem to last only so
long before emerging new technologies, methodologies, and programming languages du jour take
over the agenda. In fact, change often seems to be the only constant in this business.

To report code errors, email SystemiNetwork.com

In the early '90s, I ventured into the world of RPG and CL and have since been devotedly occupied
with the challenge of writing solid, well-structured programs. Here, I share with you the style and
techniques I use when I write an RPG application or program. I've chosen and slightly rewritten a
command called Work with Output Queue Authorities (WRKOUTQAUT), a utility that displays the
output queue authorities assigned to one or more user profiles.

My approach is based primarily on personal preference and perception developed and adapted over
the years rather than scientific principles or "programming schools.” Given this limitation, it is still
my intention to provide you with the inspiration that comes from looking over a fellow programmer's
shoulder.

The WRKOUTQAUT Command

The original objective of the WRKOUTQAUT command was to provide a quick overview of user
profiles' authorities to a specific output queue. Output queues contain all kinds of information in the
form of spooled files waiting to be printed — some of which contain confidential and sensitive data.
Spooled files are part of important business processes such as invoicing, confirming order
confirmations, and distributing papers, so access to and management of the output queues handling
these spooled files should be very restrictive and well devised. The ability to immediately verify and
manage authority to a specific output queue from one Work with panel allows for tighter security and
reduces the time spent on management tasks when compared with native commands.

Now to go into detail about specific requirements and design considerations for WRKOUTQAUT (for
a list of source specifications for WRKTOUTQAUT, see "WRKTOUTQAUT Source Specification,"
below. For the UI, I usually choose User Interface Manager (UIM) to define the screens and printed
lists. The necessary dialog and interaction with the list panel group is performed by UIM APIs and
exit programs that provide a robust, consistent, and highly functional UI with a minimum of
programming effort.

Because the UIM handles the screen dialog, I can concentrate on the core functionality of my utility.
Although the UIM programming techniques are beyond the scope of this article, the System

http://iprodeveloper.com/print/rpg-programming/writing-rpg-code-then-and-now 04-04-2014

Writing RPG Code Then and Now Page 2 of 7

iNetwork Programming Tips newsletter (SystemiNetwork.com/sipt) contains a number of articles
that explain the anatomy, employment, and usefulness of UIM list panel groups.

Analysis Precedes Coding

Designing, planning, and coding the components that comprise the final utility begins with the
modeling of the initial program interface, which in this case is provided by the WRKOUTQAUT
command definition. As Figure 1 shows, it's a simple interface, primarily made up of an output queue
name and a generic user profile name. The latter includes the special value *ALL, which lets you
select all user profiles on a system. Also, an optional parameter lets you direct the output to a spooled
file instead of the display panel.

Whenever a command interface is involved, I usually include a command validity-checking program
(VCP) to validate input parameters — in this case, the qualified output queue name parameter. If the
specified output queue can't be found (e.g., because of a typo or lack of library qualification), the user
should be informed right away and given the chance to correct the input. There's no point in calling
the command processing program (CPP) to find out, because this would force the user to reprompt
the command in order to carry on. The same precaution also applies when a specific user profile
name is specified for the second parameter. In addition to the other checks, the VCP also verifies that
the user profile executing the WRKOUTQAUT command includes the required *ALLOBJ and
*SECADM special authorities.

Another important aspect of employing a command interface is the option (and in my opinion,
requirement) to include a help text panel group to explain the command's usage, parameters,
restrictions, and error messages. Providing online, cursor-sensitive help text increases the usability
of the command and helps avoid user errors and misunderstandings derived from lack of precise
instructions and documentation. For the WRKOUTQAUT command, you must also provide help text
for the Work with panel, including a general explanation of the panel as well as all fields and list
columns. All this help text goes in the same help text panel group.

You will need several subprocedures to perform a variety of functions related to validation and
message handling as well as retrieval of output queue, user profile, and authority information. If
more than a couple of subprocedures are in play, and if grouping the functions make sense, I use
service programs and binder language to create one or more function library service programs and
place my subprocedures in these service programs. That helps me focus on the purpose and structure
of the program itself, and also supports and encourages reuse of the subprocedures. For general-
purpose functions, I create and maintain application-wide or systemwide service programs and
enforce naming standards to avoid name conflicts.

What You'll Need

The service program will contain all the subprocedures that I can isolate from the VCP and CPP. In
other words, I must identify all the code chunks and functions that make sense to encapsulate into
individual subprocedures, each having one specific function and each provided with a well-defined
procedure interface specifying the applicable input parameters, return value, and sometimes output
parameters to satisfy special requirements.

To begin, I often sketch out the program's or utility's data output to help me establish more precisely
what functions I'll need for the desired outcome. In this case, the following requirements come out of
that process:

Output queue information:

http://iprodeveloper.com/print/rpg-programming/writing-rpg-code-then-and-now 04-04-2014

Writing RPG Code Then and Now Page 3 of 7

 queue library
s queue owner
« public authority
« authorization list

User authority information:

¢ output queue
o start writer
> add spooled file
o work with
o clear, hold, release
> change
o spooled files
o display, copy, send
o change, delete, hold, release
« output queue authority and authority source

All this information is readily available through APIs, so I can quickly complete my design of the
functions to include in my service program and the core functionality that must remain in the CPP.
Following a similar requirement analysis of the VCP, the service program contains the subprocedures
listed in "Service Program Subprocedures" below.

The Service Program

Let's briefly walk through the essential parts of the service program implementing our list of
subprocedures (you can download or extract the service program in the code bundle at
SystemiNetwork.com/code). In the global declaration section preceding the subprocedure
prototypes, I've defined some API return information data structures to be shared by the
subprocedures. One is the API error data structure ERRC0100, which is used by practically all
subprocedures. Because the data structure is always interrogated immediately following an API call,
I can be certain the data structure subfields always reflect the actual status of the API call and
contain current values, so there's no need to define the ERRC0100 data structure repeatedly in each
subprocedure.

I have the option to override the global definition of the ERRC0100 data structure by placing a
different version of the data structure locally in a subprocedure. For example, if I want to receive an
exception message instead of the message ID and message data in a specific situation, I can code a
short version of the ERRC0100 data structure defining zero bytes being available for return
information, thereby triggering the API to behave as desired.

I also define the USRI0200 user information data structure returned by the Retrieve User
Information (QSYRUSRI) API as a global data structure. I decided to do so to avoid paying an
unnecessary performance penalty caused by calling QSYRUSRI multiple times to retrieve the same
user profile's different attributes when loading the list entries of the Work with panel. Because this
information retrieval is performed consecutively for each user profile to be added to the list panel, I
need to call the QSYRUSRI API only the first time; the following three times the data is retrieved, the
USRI0200 data structure already contains the correct information. I simply added a check in each of
the relevant subprocedures, matching the input parameter user profile name with the USRIo200
data structure user profile name, and then call the APT only if this test is not passed.

http://iprodeveloper.com/print/rpg-programming/writing-rpg-code-then-and-now 04-04-2014

Writing RPG Code Then and Now Page 4 of 7

In the special case where the WRKOUTQAUT command is called for one specific user profile, and I
use the F5 key is to update the panel (e.g., following an update of the user profile or user profile
authorities), I need to ensure that these updates are correctly reflected upon redisplay of the panel. I
achieve this update by adding a subprocedure that enables the caller to clear the USRI0200 data
structure user profile name, and then call that subprocedure immediately before entering the loop
that builds the list of user profiles. This technique lets the QSYRUSRI API be called again during the
subsequent user profile information retrieval, thus refreshing the USRI0200 data structure.

The message-handling subprocedures need some attention — sending a program message requires a
specific and correctly defined target program message queue to make the dispatched message appear
in the right place on the right screen. The Send Program Message (QMHSNDPM) API allows for a
multitude of combinations of special values, program and module names, call stack counters, and
invocation pointers. To keep the scheme as simple and straightforward as possible, I took advantage
of the ILE activation group facility.

By having the message subprocedure caller (either the WRKOUTQAUT command's VCP or CPP) run
in a *NEW activation group, I ensure that the caller programs also constitute an activation group
control boundary. Specifying *CALLER as the service program activation group makes the service
program run in the same activation group as the program activating it. With this simple setup, I can
specify the special value *CTLBDY (control boundary) as the target message queue and indicate 1 as
the call stack counter on the QMHSNDPM API call. These values let me identify the call stack
immediately preceding the VCP or CPP as the target program queue. As a result, the message will
display on the screen from where the WRKOUTQAUT command was executed. Relying on such a
technique warrants proper documentation or a command build script to ensure that the crucial
activation group attributes survive possible recompilations of the involved programs.

The VCP

As I mentioned earlier, the VCP performs three simple checks, and if an error occurs, the program
returns the two standard VCP messages from the system QCPFMSG message file. The first is the
diagnostic CPD0006 message, which specifies the actual cause of the validity check failure as the
message data. The CPD0006 message is followed by the CPFo002 escape message, which
immediately terminates the command being validity-checked and displays the messages directly on
the command prompt.

The validity checks verify the existence of the specified output queue and user profile parameter (as
far as the latter is concerned, only in the event that a specific user profile was given as input).
Furthermore, the VCP verifies that the user profile running the WRKOUTQAUT command contains
the *ALLOBJ and *SECADM special authority. Both of these special authorities are required to list
any given user profile as well as to perform the available actions and function against the output
queue and user profiles from the WRKOUTQAUT command's list panel. Since the CPP doesn't rely
on adopted authority from its owner, but instead uses the actual authority of the current user, it's
acceptable to run the special authority check from the VCP. Otherwise, I would perform or duplicate
the check in the CPP as well ensure that it is not circumvented by calling the CPP directly.

The CPP

At this point I'm ready to write the CPP. Since the UIM performs the user interaction, and it isn't the
first time I've written a Work with list program based on a UIM list panel group, I locate suitable
existing programs from which to copy the basic skeleton and relevant code snippets. When
necessary, I update the code to reflect current programming standards, style, and techniques. That

http://iprodeveloper.com/print/rpg-programming/writing-rpg-code-then-and-now 04-04-2014

Writing RPG Code Then and Now Page 5 of 7

effort helps me both maintain continuity in my programming practice and continue to reflect on and
improve my coding style, standards, and techniques.

The CPP constitutes the core of the WRKOUTQAUT command, so let's walk through some of the
details and discuss the considerations that are involved in the process.

To ensure that my program will keep working as intended following future compilations and to
document possible dependencies, I use a combination of source header comments specifying the
required module compilation and (service) program creation commands and H-spec compiler
directives. If necessary, I also document other types of setup and configuration information.
Additionally, I try to organize the D-specs in a common sequence and style so I can quickly locate the
various types of specifications as I write or edit the program. The sequencing approach I use is as
follows:

1. system and file information data structures as well as the API error data structure

2. global variables and constants (variables specified in mixed case and constants in all upper
case to allow immediate distinction between the two)

3. APIinput, return data structures, and all other data structures

4. external system program and procedure specifications (I like to group these according to the
functionality they provide and the interaction that they perform: UIM APIs in one group,
Open List APIs in another group, and so on)

5. external user program and procedure specifications, typically provided by application or
function library service programs and grouped as item 4

6. internal and local subprocedures, defined within the program itself

7. module entry parameter data and parameter list specification, thus appearing immediately
before the executable code

These groupings work for me, but something else might work better for you. The main idea is that
keeping some sort of consistency and standard within a shop is helpful for navigating, reviewing, and
editing your RPG source code.

Old Principles, New Code

When it comes to writing executable code, I'm basically still adhering to the principles I learned in
early NEWS/400 articles: To make the program flow distinct and easy to follow, I aim to make it
stand out in those places where the decisions controlling the different paths of execution are made.
To achieve that goal, I separate the individual actions or functions derived from these decisions,
leaving only the primary functions and basic decisions in the main line of the code.

Obviously, this method requires that I place the extracted functions and code chunks elsewhere.
Whenever possible and appropriate, I prefer to create subprocedures to perform well-defined and
well-interfaced functions. This approach provides superior documentation of the function
performed, as it not only names the function but also directly documents both the exact input
parameters and the target of the return value. There are other significant advantages to
subprocedures, and they are truly the most prominent and crucial enhancements added to the RPG
language in its long history. Not only do they influence and improve the programming syntax, but
even more so the design considerations and mindset of the RPG programmer.

However, if there's no natural interface for input parameters or return values and the code is acting
on global variables only, I use mostly subroutines to organize and structure my code. Thus, when I
encounter a subroutine, I'm also given information about the intention and scope of the work being
performed in that subroutine.

http://iprodeveloper.com/print/rpg-programming/writing-rpg-code-then-and-now 04-04-2014

Writing RPG Code Then and Now Page 6 of 7

To support program readability, I exclusively use free-format specifications when possible. Doing so
increases the space available for code statements and allows for indentation, which is critical to
letting you quickly spot the code segments that are dependent on certain conditions. I'm really
looking forward to the day when free format will be available for all RPG specifications. That will
finally break RPG free of its aged reputation and historical chains. When writing RPG, I use visual
effects. I put blank lines before and after statements that deserve particular attention or, for example,
to group ENDxx statements. Likewise, for expressions that span more than one line, I break down
the expression in single elements and place each element aligned on individual lines. Although some
might view that approach as needless fiddling and wasting precious time, in my experience it
increases the immediate readability and clarity of the code. For example, this format lets you quickly
verify the exact number of parameters passed on a procedure call or spot where the concatenation of
text lines and variables breaks. It also makes it easier to copy, replace, insert, or model elements in
an expression. As an example of these style and design principles, Figure 2 displays the main line of
the CPP and the two subroutines controlling the display or printing of the user list.

When It Works, You're Half Done

Although slightly exaggerated, the above subhead is true in that whether I write a program from
scratch or find a starting point in my source library, I'm not at all done when I get my program
working. Dealing with approaching deadlines or daily business tasks certainly can seem irresistible,
but I always try to find the time to tidy up my code. My most prominent enemies are variables or
constants that were not used after all, shortcuts and sloppy constructs introduced as quick paths to
verify an assumption, unnecessary code complexity resulting from not fully comprehending the task
at hand, and irrelevant, redundant, or replicated code. The cleaner and better organized you leave
your code, the easier it is to get back to or hand over in the future.

I'll run out of space long before I finish the discussion that I've started here, but ideally the
discussion shouldn't end as long as the RPG language is still developing as vigorously as it has been
thus far. RPG is still rightfully regarded as the best programming language for writing robust,
reliable, and competitive business applications. System architecture and design increasingly focus on
system integration and separation of business logic and the presentation layer. This fact, paired with
the steady growth in communication capacity and development of standardized, flexible data
protocols, makes it clear that RPG programming skills will continue to provide value in tomorrow's
marketplace, if RPG programmers fully exploit the ever-expanding applicability of RPG.

Carsten Flensburg is a System iNEWS technical editor.

Service File Subprocedures

Here is a list of subprocedures used in our service program and the functions they perform:

Subprocedure: Function:

ChkObj() Check object existence

ClrUsrCch() Clear user profile information cache
GetGrpPrf() Get user profile's group profile
GetJobTyp() Get job type

GetNbrSupGrp() Get user profile's number of supplemental group profiles

GetObjAutL() Get object authorization list

http://iprodeveloper.com/print/rpg-programming/writing-rpg-code-then-and-now 04-04-2014

Writing RPG Code Then and Now Page 7 of 7

GetObjOwn() Get object owner

GetPubAut() Get object public authority
GetUsrCls() Get user profile's user class
RtvMsg() Retrieve message description text

SndCmpMsg() Send completion message
SndDiagMsg() Send diagnostic message

SndEscMsg() Send escape message

SndStsMsg() Send status message
ValSpcAut() Validate user profile special authority
—C.F.

WRKOUTQAUT Source Specifications

The following source members are used when creating the WRKOUTQAUT command:

Member Type Text

CBX605 RPGLE Work with Output Queue Authorities - CPP
CBX605V RPGLE Work with Output Queue Authorities - VCP
CBX605S RPGLE Work with Output Queue Authorities - Services
CBX605B SRVSRC Work with Output Queue Authorities - Binder source
CBX605H PNLGRP Work with Output Queue Authorities - Help
CBX605P PNLGRP Work with Output Queue Authorities - Panel Group
CBX605X CMD Work with Output Queue Authorities

CBX605M CLP Work with Output Queue Authorities - Build command

To ease the WRKOUTQAUT command build process, I've included the CBX605M CL program.
Simply compile and run the CBX605M program, following the instructions in the source header, and
providing your target library as the only parameter. To download the code bundle, go to
SystemiNetwork.com/code.

— C.F.

Source URL: http://iprodeveloper.com/rpg-programming/writing-rpg-code-then-and-now

http://iprodeveloper.com/print/rpg-programming/writing-rpg-code-then-and-now 04-04-2014

