
print | close

APIs by Example: Zip and Unzip Files with the New 7.1 Zip
API Support

System iNetwork Programming Tips Newsletter

Carsten Flensburg

Carsten Flensburg

Thu, 12/08/2011 - 2:00am

In a recent IBM announcement, IBM revealed that zip and unzip file support had been developed

and PTF'd for release 7.1. This support comes in the form of two ILE APIs, QzipZip and QzipUnzip,

respectively. At the end of this article, I've included information about the 7.1 PTFs delivering the zip

support APIs. One PTF installs the QZIPUTIL service program containing the aforementioned APIs,

and another PTF copies the associated header files to the QSYSINC library. The zip support was part

of a major refresh of IBM i 7.1, and I suggest you follow the above link to familiarize yourself with all

the details, which might include other enhancements of interest.

After a quick study of the zip APIs' documentation and header files, I knew that it would be quite

useful to create a couple of CL command interfaces to make the zip and unzip services immediately

available, wherever and whenever the common requirement of zipping or unzipping a file or

directory on IBM i was encountered. I therefore decided to write the Zip File (ZIPF) and Unzip File

(UNZIPF) CL commands. The CPPs also offer RPG/IV examples of how to code the two

corresponding APIs, should you want to integrate zip or unzip functionality directly in your

programs. Today's APIs by Example brings you the details.

The IBM announcement says that the QzipZip and QzipUnzip APIs are available with the most recent

IBM HTTP SERVER FOR I group PTF, which at the time of writing amounts to level 10. However, it

quickly became apparent that this is not the case. I expect the APIs will be included in the next

update of the HTTP group PTF, although I do not know that for sure, so we'll have to wait and see.

Doing a search on IBM's APAR and PTF database, however, allowed me to identify the two PTFs

including the APIs as well as the associated QSYSINC library header files, respectively, and as

mentioned you'll find links to the PTF cover letters below.

Although the QzipZip and QzipUnzip APIs were just recently released, the IBM i 7.1 Information

Center's API section already includes the API documentation for these APIs. Surprisingly however,

the online QzipZip and QzipUnzip API documentation specifies only the APIs parameter lists in C

notation, as the following excerpt from the API manual's UNIX-Type API section shows:

 Compress Files and Directories (QzipZip) API

 #include

 void QzipZip(

 Qlg_Path_Name_T * fileToCompress,

 Qlg_Path_Name_T * compressedFileName,

 char * formatName,

 char * zipOptions,

 char * errorStruct)¨

Page 1 of 8APIs by Example: Zip and Unzip Files with the New 7.1 Zip API Support

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-zip-and-unzip-files-ne...

 Decompress an archive file (QzipUnzip) API

 #include

 void QzipUnzip(

 Qlg_Path_Name_T * compressedFileName,

 Qlg_Path_Name_T * dirToPlaceDecompFiles,

 char * formatName,

 char * unzipOptions,

 char * errorStruct)

As it turned out, the new QZIPUTIL RPG/IV header file in library QSYSINC actually also includes

the RPG/IV prototypes for the two APIs, so the missing parameter list definition is not critical for

anyone unfamiliar with C. Should you at some point be challenged with deciphering a C prototype for

which IBM did not do the job for you, you will, however, find plenty of help in the document

Converting from C prototypes to RPG prototypes, written by Barbara Morris of IBM and published

on Scott Klement's website. A link to the document is included below.

Anyway, if you're more comfortable with IBM's usual API parameter list notation, here's my take on

how the corresponding Zip and Unzip API documentation would look in the IBM Information Center

API manual, given the above C prototypes:

 Compress Files and Directories (QzipZip) API

 Required Parameter Group:

 1 File to zip Input Char(*)

 2 Zip file name Input Char(*)

 3 Zip Options format name Input Char(8)

 4 Zip options Input Char(*)

 5 Error code I/O Char(*)

 Decompress an archive file (QzipUnzip) API

 Required Parameter Group:

 1 Zip file name Input Char(*)

 2 Unzip to directory Input Char(*)

 3 Unzip options format name Input Char(8)

 4 Unzip options Input Char(*)

 5 Error code I/O Char(*)

In the following paragraphs, I briefly walk you through the parameters for both APIs, which are

relatively few in number and pretty straightforward. Both APIs' first and second parameter is a

Qlg_Path_Name_t structure, the first one pointing to the object to be processed, and the second one

pointing to where the outcome of the process should be placed. In addition to allowing you to specify

a path name, the Qlg_Path_Name_t structure also provides for a set of parameters defining all

relevant information about how the receiving API should interpret the path name string in order to

arrive at the correct path name:

 Qlg_Path_Name_t structure

Page 2 of 8APIs by Example: Zip and Unzip Files with the New 7.1 Zip API Support

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-zip-and-unzip-files-ne...

 Offset

 Dec Hex Type RPG/IV Field

 0 0 BINARY(4) 10i 0 CCSID

 4 4 CHAR(2) 2a Country or region ID

 6 6 CHAR(3) 3a Language ID

 9 9 CHAR(3) 3a Reserved

 12 C BINARY(4) 10i 0 Path type indicator

 16 10 BINARY(4) 10i 0 Length of path name

 20 14 CHAR(2) 2a Path name delimiter character

 22 16 CHAR(10) 10a Reserved

 32 26 CHAR(*) 5000a Path name (or pointer to path

name)

You must specify a Coded Character Set Identifier (CCSID), a country or region ID, a language ID, as

well as the path type being either a character string or a pointer to a character string, the length of

path name, and the path name delimiter character. All this information is used by the API in

question to ensure that the specified path name is addressed correctly. Luckily, most of the

parameters in the Qlg_Path_Name_t structure take a default value pointing to the corresponding

job attribute currently in effect. As for the path name delimiter character, note that the Zip APIs

accept only a forward slash (/).

The following data structure definition shows how the above Qlg_Path_Name_t specification is

translated into RPG/IV. The aforementioned default values are specified for all the parameters

supporting this feature:

 **-- Global constants:

 D CUR_CCSID c 0

 D CUR_CTRID c x'0000'

 D CUR_LNGID c x'000000'

 D CHR_DLM1 c 0

 **-- Qlg_Path_Name_t API path:

 D Qlg_Path_Name_t...

 D Ds Qualified Align

 D CcsId 10i 0 Inz(CUR_CCSID)

 D CtrId 2a Inz(CUR_CTRID)

 D LngId 3a Inz(CUR_LNGID)

 D 3a Inz(*Allx'00')

 D PthTypI 10i 0 Inz(CHR_DLM1)

 D PthNamLen 10i 0

 D PthNamDlm 2a Inz('/ ')

 D 10a Inz(*Allx'00')

 D PthNam 1024a

 D pPthNam * Overlay(PthNam)

In a previous article, I discussed the Qlg_Path_Name_t structure in more detail, and I include a link

to this article below. As for the Zip and Unzip APIs' parameter lists in particular, the zip operation

expects you to employ the Qlg_Path_Name_t structure to specify a path to the file or directory that

you want to zip as the first parameter, and the name of the zip file archive to store the zipped object

(s) in as the second parameter. Likewise, for the unzip operation, you specify the zip file name to

unzip as the first parameter, and the directory in which you want the unzipped object(s) to be placed

as the second parameter.

Page 3 of 8APIs by Example: Zip and Unzip Files with the New 7.1 Zip API Support

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-zip-and-unzip-files-ne...

Both APIs also support a number of options to apply for the zip operation being performed. These

options are passed in another structure, whose format name must be specified as API parameter

number three, and the actual option structure as parameter four. The Zip API option format

ZIP00100 has the following definition:

 Zip options structure ZIP00100

 Offset Type RPG/IV Field

 Dec Hex

 0 0 CHAR(10) 10a Verbose option

 10 A CHAR(6) 6a Subtree option

 16 10 CHAR(512) 512a Comment

 528 210 BINARY(4) 10u 0 Length of the comment

 UNSIGNED

The Verbose option specifies whether verbose messages are to be printed to the standard out during

the compression process. The system itself does not set up stdin, stdout, stderr descriptors, and it is

the responsibility of the user of this API to set the descriptors when using this option.

The Subtree option specifies whether directory subtrees are included or not when creating an archive

file. And the Comment option allows you to add a comment in the job CCSID to the newly created

archive file. The corresponding unzip options structure UNZIP100 should be defined as follows:

 Unzip options structure UNZIP100

 Offset Type RPG/IV Field

 Dec Hex

 0 0 CHAR(10) 10a Verbose option

 10 A CHAR(6) 6a Replace option

The Replace option specifies whether an existing file needs to replaced or not if a file by the same

name already exists in the target path. This option applies only to file objects; directory names are

ignored. The verbose option is also supported for the unzip operation. As noted above, the verbose

option relies on a programming effort provided by the caller of the API. I've included a link below to

an article written by Scott Klement discussing the setup involved in accessing the stdin, stdout, and

stderr data streams, albeit in a slightly different scenario, in case you'd like to investigate this option

further.

Regarding the option structure format names themselves, it's worth noting that the regular API

standard pattern of four letters followed by four digits is not being observed. Why this is the case I

don't know, but I did wonder why IBM has not enforced the common API standard, especially due to

the ambiguity in the ZIP00100 format name—is the fourth byte an 'O' or a '0'?

The fifth and final API parameter is, however, the good old standard API error structure, which has

been discussed many times earlier, so I don't go into more detail on this topic here. I've included

IBM's prototypes defining the Zip API interfaces below. Following installation of the PTFs referenced

at the end of this article, you should find the RPG/IV prototypes as well as parameter structure

definitions in the QZIPUTIL header file in QRPGLESRC in the system include library QSYSINC. The

prototypes are included below:

Page 4 of 8APIs by Example: Zip and Unzip Files with the New 7.1 Zip API Support

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-zip-and-unzip-files-ne...

D QzipZip PR EXTPROC

(*CWIDEN:'QzipZip')

 D filesToZip LIKEDS

(Qlg_Path_Name_T) CONST

 D zipFileName LIKEDS

(Qlg_Path_Name_T) CONST

 D formatName 8A CONST

 D zipOptions LIKEDS

(Qzip_Zip_Options_T)

 D CONST

 D errorStruct 1000A OPTIONS(*VARSIZE)

 D QzipUnzip PR EXTPROC

(*CWIDEN:'QzipUnzip')

 D zipFileName LIKEDS

(Qlg_Path_Name_T) CONST

 D unzipTargetPath...

 D LIKEDS

(Qlg_Path_Name_T) CONST

 D formatName 8A CONST

 D unzipOptions LIKEDS

(Qzip_Unzip_Options_T)

 D CONST

 D errorStruct 1000A OPTIONS(*VARSIZE)

The Zip APIs are implemented by means of the QZIPUTIL service program located in library QSYS.

The service program is written in ILE C++, hence IBM is following the convention of specifying

either *CWIDEN or *CNOWIDEN in the prototype definition. In this case irrespective of no return

value or parameters passed by value being present, which are normally considered the indicators for

this practice.

Another issue to take into consideration is the fact that among the Zip APIs, error return messages

are a number of messages supporting *CCHAR message data (a character string that can be

converted). If data of this type is sent to a message queue that has a CCSID tag other than 65535 or

65534, the data is converted from the CCSID specified by the send function to the CCSID of the

message queue.

To extend the *CCHAR convertible character support to the API error message handling in the two

CPPs calling the Zip APIs, I employ the API error return message data structure format ERRC0200.

For more information on this technique, please check out the article "APIs by Example: Using the

ERRC0200 Data Structure," by following the link below.

Anyway, as for the two Zip File CL commands constructed on the basis of the corresponding Zip

APIs, let's take a look at the Zip File (ZIPF) command prompt, in essence simply exposing the

parameters supported by the QzipZip API:

Page 5 of 8APIs by Example: Zip and Unzip Files with the New 7.1 Zip API Support

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-zip-and-unzip-files-ne...

 Zip File (ZIPF)

 Type choices, press Enter.

 File to compress

 Compressed file name

 Verbose option *NONE *NONE, *VERBOSE

 Directory subtree *ALL *ALL, *NONE

 Comment *BLANK

You specify the file or directory to zip, as well as the zip file to create. Wildcard characters and

pattern matching of the path name are not supported. The path can be an absolute path or a relative

path name. All relative path names are relative to the current directory at the time when the ZIPF

command is run. In addition to specifying whether a directory subtree should be included in the zip

operation, you also have the option of associating a comment with the zip file being created as a

result of the ZIPF command being run.

The complementary Unzip File (UNZIPF) command has the following prompt, which likewise

exposes the parameters supported by the QzipUnzip API:

 Unzip File (UNZIPF)

 Type choices, press Enter.

 Compressed file name

 Directory to place files

 Verbose option *NONE *NONE, *VERBOSE

 Replace *NO *YES, *NO

Page 6 of 8APIs by Example: Zip and Unzip Files with the New 7.1 Zip API Support

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-zip-and-unzip-files-ne...

I've included the verbose option for both commands for completeness. Yet in order to actually

employ this option, programming skills and efforts are involved, as mentioned earlier. For full

documentation of the ZIPF and UNZIPF commands, please refer to both commands' online help text

panel group. Note that the full path of the zipped object is placed in the specified directory when the

object is decompressed and restored.

Also note that the CCSID of a zipped object is not preserved upon decompression, but rather reflects

the job CCSID being in effect when the zip file is unzipped. This restriction needs to be considered in

order to ensure that a decompressed text file's CCSID still reflects the file's actual content correctly.

The Zip and Unzip APIs use the open-source zlib library to inflate and decompress the specified files,

respectively. To learn more about the open-source zlib library. please follow the link at the end of this

article pointing you to the zlib library home page.

This APIs by Example includes the following sources:

CBX240 -- RPGLE -- Zip File - CPP

CBX240H -- PNLGRP -- Zip File - Help

CBX240V -- RPGLE -- Zip File - VCP

CBX240X -- CMD -- Zip File

CBX241 -- RPGLE -- Unzip File - CPP

CBX241H -- PNLGRP -- Unzip File - Help

CBX241V -- RPGLE -- Unzip File - VCP

CBX241X -- CMD -- Unzip File

CBX240M -- CLP -- Zip/Unzip File - Build Commands

To create all these command objects, compile and run the CBX240M CL program, following the

instructions in the source header. You'll also find compilation instructions in the respective source

headers.

PTFs Delivering 7.1 ZIP and UNZIP support:

5770SS1-SI44777 - Zip and Unzip API on V7R1

5770SS1-SI44998 - Header files for QZIPUTIL service program

Related articles and documentation:

IBM i 7.1 Enhancements Optimize ISV Support Announcement

zlib Library Home Page

Barbara Morris, IBM: Converting from C prototypes to RPG prototypes

APIs by Example: Conversion of a Path Name

APIs by Example: Using the ERRC0200 Data Structure

Suppress PASE Output Messages (stdin, stdout, stderr)

Communicating Through a Pipe

Communicating Through a Pipe – Part 2

Page 7 of 8APIs by Example: Zip and Unzip Files with the New 7.1 Zip API Support

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-zip-and-unzip-files-ne...

Don't Submit, Spawn!

This article demonstrates the following UNIX-type APIs:

Compress Files and Directories (QzipZip) API

Decompress an archive file (QzipUnzip) API

API Path name format

Error code parameter format

Retrieve the source code for this API example.

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-zip-and-unzip-files-new-

71-zip-api-support

Page 8 of 8APIs by Example: Zip and Unzip Files with the New 7.1 Zip API Support

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-zip-and-unzip-files-ne...

