4/6/2014 APIs by Example: Physical File Triggers and the QDBRTVFD API

B print | close

APIs by Example: Physical File Triggers and the QDBRTVFD API

iPro Developer

Carsten Flensburg

Carsten Flensburg

Tue, 04/24/2012 - 6:00am

Accessing physical file trigger details is easy with this API

Click here to download the code bundle. In the words of the APImanual, the Retrieve Database File
Description (QDBRTVFD) API "allows you to get complete
and specific information about a file on a local or remote

sy stem." This statement is certainly no exaggeration. At times, you may find the amount and complexity of the
information returned by the QDBRTVFD APIslightly overwhelming. To show how this APIworks, I exploit
QDBRTVFD to gain access to details about the triggers associated with a specified physical file.

Toreport code errors, email iProDeveloper.com

When it comes to creating and managing physical file triggers, we can use native CLcommands and SQL
statements, but so far, we still lack a CL command for listing and working with the triggers defined for a
physical file. Employing the QDBRTVFD APIand User Interface Manager programming techniques, however,
provides an easy solution for that insufficient situation. Here, we look at the new Work with Physical File
(WRKPFTRG) command, based on the trigger information that the QDBRTVFD API makes available. (To
download the code bundle for this command, go to iProDev eloper.com /code.)

QDBRTVFD's Parameters

Let's begin with a look at the QDBRTVFD API parameter list (Figure 1), as documented by IBM in the online
Information Center. QDBRTVFD will put the requested file information in the first parameter, Receiver variable.
The second parameter tells the APLhow much space is available in terms of receiver variable length in bytes. If
QDBRTVFD deems the initial storage allocated for the return variable as insufficient, the APIreturns the actual
size needed in the Bytes available subfield of the return variable; thisamount of storage is then reallocated and
the APIcall subsequently repeated.

Figure 1: The QDBRTVFD APIrequired parameter group

1 Receiver variable Output Char (*)

2 Length of receiver variable Input Binary (4)
3 Qualified returned file name Output Char (20)
4 Format name Input Char (8)

5 Qualified file name Input Char (20)
6 Record format name Input Char (10)
7 Override processing Input Char (1)

8 System Input Char (10)
9 Format type Input Char (10)
0 Error Code I/0 Char (*)

Default Public Authority: *USE

The third API parameter, Qualified returned file name, is an APl output parameter used tocommunicate the
qualified name of the file for which information is returned. You'll find this parameter useful if you employ one
of the special values *LIBL or *CURLIB to specify the library part of the fifth API parameter, Qualified file name.
Here, you submit the qualified name of the file for which toretrieve the requested file information. In this case,
the actual library name resolved is returned as part of the third parameter.

The fourth API parameter—Format name—identifies the ty pe of file information toreturn. The ty pes of file
information available and their associated return format names are as follows:

http://iprodevel oper.com/print/rpg- prog ramming/apis-example-physical-file-triggers-and-qdbrtvid-api 1/4



4/6/2014 APIs by Example: Physical File Triggers and the QDBRTVFD API

¢ TFile definition template—return format FILDo100

e Format definition template—return format FILDo200

¢ Key field information template—return format FILD0O300
e Trigger information template—return format FILDo400

Each format name identifies an often very complex hierarchy of structures. In each format's header structure,
you'll find offsets to the relevant associated substructures applicable tothe requested format name; these
substructures in turn provide offsets to deeper nested substructures. In your program, you then jump from
structure to structure toreach the information you want to access.

This procedure can present a challenge because of the complex and layered structure of the return formats. For
more details about this parameter, please refer tothe online APIdocumentation listed in Find Out More, below.
Here, you'll also find links to previous APIs by Example articles discussing QDBRTVFD, the techniques involved
in calling this APL and processing the produced output.

The sixth API parameter, Record format name, applies only toreturn format FILDo200. In this parameter, y ou
indicate the name of the record format in the specified file used to generate the file description. Special value
*FIRST, meaning the first record format found, is supported for this parameter.

Next, the Override processing parameter defines whether the APIshould honor current file overrides in effect for
the job calling the APL The eighth parameter—System—communicates on which system the specified file should
reside, either the local or a remote sy stem, as indicated by two of the special values available for this parameter,
*LCL and *RMT, respectively. A third value, *FILETYPE, lets you request information about files on both the
local and remote sy stems, depending on the file ty pe.

The Format type parameter, used only with format FILDo200, controls whether the logical formats returned
areinternal or external. The parameter value *EXT points to external formats, whereas parameter value *INT
points tointernal formats. Because you're probably already familiar with the final API parameter (the standard
APIerror data structure), I'll leave it out of scope for now.

Given the requirement of retrieving the triggers defined for a specified physical file, this article takes
advantage of the FILDo400 APIreturn format. Compared with other return formats, FILDo400 is quite simple.
The header format—Qdb_Qdbftrg_Head—defines not only general trigger information but also the offset to the
Qdb_Qdbftrg_Def Head structure, which isactually an array containing one entry for each of the triggers
defined for the file.

The following approach provides the foundation for retrieving trigger information:

1. The Qdb_Qdbftrg_ Head header structure is based on the space pointer pQdb_Qdbftrg_Head, which is
assigned the address of the APIreturn variable.

2. The Qdb_Qdbftrg_Def Head array structure is based on the space pointer pQdb_Qdbftrg_Def Head.

3. Toget from the Qdb_Qdbftrg_Head header structure to the first entry of the Qdb_Qdbftrg_Def Head
array structure, you add the offset defined by the Qdb_Qdbftrg_Head structure's subfield
Off_Ent_Num1 tothe pQdb_Qdbftrg_Head pointer and store the result in the pQdb_Qdbftrg_Def_ Head
pointer.

4. Toget tothe next array entry, simply add the Qdb_Qdbftrg_Def Head entry length defined by the
structure's Def_Len subfield to the pQdb_Qdbftrg_Def Head pointer. Repeat this procedure only for the
number of Qdb_Qdbftrg_Def Head entries available, as defined by the Qdb_Qdbftrg_Head header
structure's subfield Num_Trgs, because it's otherwise unpredictable what storage the
pQdb_Qdbftrg_Def Head pointer references.

Following the Process

To see how thisrecipe transforms to RPG/IV, check out the code in the CBX246 command processing program's
LodTrgInf subroutine. Running the CBX246 program in the source debugger lets y ou follow the process as it
unfolds. (For a list of the downloadable code files, see "How to Com pile," below.)

When prompted, the WRKPFTRG command appears as Figure 2 shows.

Figure 2: Work with Physical File Triggers (WRKPFTRG) command prompt

http://iprodevel oper.com/print/rpg- prog ramming/apis-example-physical-file-triggers-and-qdbrtvid-api



4/6/2014 APIs by Example: Physical File Triggers and the QDBRTVFD API

Work with Phys File Triggers (WRKPEFTRG)

Type choices, press Enter.

Physical file . . . . . . . . . Name
Library . . . . . . . . . . . *LIBL Name, *LIBL, *CURLIB
Output . . . . . . . . . . . .. * *, *PRINT

You'll also find help text provided for the command and its parameters. Running WRKPFTRG for file CUS001F in
library PRODLIB on my system produced the list panel in Figure 3, displaying the twotriggers defined for the

mentioned file.

Figure 3: Work with Physical File Triggers list panel

Work with Physical File Triggers WYNDHAMW
11-02-12 16:41:05
File . . . . . . . : CUSO01F Trigger count . . : 2
Library . . . . : PRODLIB

Type options, press Enter.
2=Change 3=Copy 4=Remove 5=Display 6=Print 8=Work with object

Trg
Opt Program Library Nbr State Oper Type Time Event
CRM0221T PRODLIB 1 *ENABLED *YES *SYS *BEFORE *INSERT
CRMO0221I PRODLIB 2 *ENABLED *YES *SYS *BEFORE *UPDATE
Bottom
Parameters or command
===>
F3=Exit F5=Refresh F6=Add physical file trigger F8=Work with file
Fll=View 2 Fl2=Cancel F22=Display entire name F24=More keys

In addition tothe trigger information listed in Figure 3, other views offer extra details, including trigger name
and trigger library as well as other operative attributes associated with the trigger, such as Allow repeated

change, Update condition, and more. The list options let you change, copy, remove, display, and print the

selected trigger(s) as well as work with the trigger program object. You can find further documentation on the
list panel, columns, list options, and function keysin the help text panel group included with the WRKPFTRG

command.

Find Out More

e Retrieve Database File Description (QDBRTVFD) API

e "APIsby Example: Analyvzing Logical Files Using the QDBRTVFD File API"
e "APIs by Example: Working with Database Files, Fields and More"

e "APIs by Example: Displaying and Locating a Physical File's Access Paths"
e "APIsby Example: Print File Field Description”

How to Compile

http://iprodevel oper.com/print/rpg- prog ramming/apis-example-physical-file-triggers-and-qdbrtvid-api

3/4



4/6/2014 APIs by Example: Physical File Triggers and the QDBRTVFD API

Below you'll find instructions on how to create the Work with Physical File Triggers command. This article
includes the following sources:

e CBX246—RPGLE: Work with Physical File Triggers

¢ CBX246E—RPGLE: Work with Physical File Triggers - UIM Exit Pgm
e CBX246H—PNLGRP: Work with Physical File Triggers - Help

e CBX246P—PNLGRP: Work with Physical File Triggers - Panel Group
¢ CBX246V—RPGLE: Work with Physical File Triggers - VCP

¢ CBX246X—CMD: Work with Physical File Triggers

¢ CBX246M—CLP: Work with Physical File Triggers - Build command

To create all above command objects, compile and run the CBX246M CL program, following the instructions in
the source header. You'll also find compilation instructionsin the respective source headers of the individual
sources.

Source URL: http://iprodeveloper.com /rpg-programming/apis-example-phy sical-file-triggers-and-qdbrtv fd-
api

http://iprodevel oper.com/print/rpg- prog ramming/apis-example-physical-file-triggers-and-qdbrtvid-api 4/4



