APIs by Example: Authorization List APIs and Secured Objects Page 1 of 5

ﬂ print | close

APIs by Example: Authorization List APls and Secured
Objects

System iNetwork Programming Tips Newsletter

Carsten Flensburg
Carsten Flensburg
Thu, 07/27/2006 (All day)

Authorization lists offer an effective and flexible method of securing sensitive objects and data. With
a single authorization list, you can manage access to many objects and, for data files, this
management can take place even while the file is open and in use. For these and other reasons,
authorization lists are instrumental in most contemporary security models. Today I demonstrate a
couple of APIs that retrieve information about authorization lists.

One of these APIs was recently added to the security-related API category. As a matter of fact, V5R4
is the first release to include the Retrieve Authorization List Information (QSYRTVAI) API in the
base install. But even before the general availability of V5R4, this API was available through PTFs for
V5R2 and V5R3. It's also included in recent CUM packages for both releases. Please follow the links
at the end of this article for more information about these PTFs.

The purpose of the QSYRTVAI API is to enable monitoring of the number of objects currently
secured by an authorization list, as well as the remaining capacity of the authorization list. An
authorization list is currently capable of storing 2,097,104 object entries per auxiliary storage pool
(ASP). Before the QSYRTVAI API's advent, the only way to find out that this limit was about to be
exceeded was when the MCH2804 exception message occurred when one tried to add a new object.
Even though 2,097,104 objects sounds like a lot, it's important to take into account that for
multimember files, each member counts as one object in the authorization list.

Anyway, to show an example of the QSYRTVAI API in action, I wrote the Check Authorization List
Size (CHKAUTLSIZ) command. Here's the CHKAUTLSIZ command prompt:

Check Authorization List Size (CHKAUTLSIZ)

Type choices, press Enter.

Authorization list Name

If you run the following command from a command line

CHKAUTLSIZ AUTL (TESTAUTL)
it returns a completion message similar to this one:

For TESTAUTL ASP *SYSBAS 41232 entries in use and 2055872 available.

http://iprodeveloper.com/print/rpg-programming/apis-example-authorization-list-apis... 04-04-2014

APIs by Example: Authorization List APIs and Secured Objects Page 2 of 5

I have included the important paragraphs of the API documentation in the CHKAUTLSIZ
command's help panel group, to make this crucial information readily available.

Now that I can get the authorization list object count, retrieving the actual individual object names
might also be interesting. Although the Display Authorization List Objects (DSPAUTLOBJ)
command is already available for this purpose, it requires you to use an output file to get at the
information programmatically and does not include information about objects in directories in the
IFS. On my V5R3 system, the CP1221C informational message appears (following the IBM copyright
notice; you have to scroll down or press F11 to actually see it) if such objects are secured by the
authorization list for which the DSPAUTLOBJ command is run. For example, if you scroll down, you
might see the following message:

6 objects were not included in this list.

If you place the cursor on the message line and press F1, the second-level help text is displayed.
Here's what that looks like:

Message 6 objects were not included in this list.
Cause Objects were found that meet the search criteria
but were not included in the returned list. Objects in a directory

could not be processed.
Recovery . . . Use the QSYLATLO API with format ATLO0110,
ATLO0210, ATLO0300, or ATLO0400 to retrieve objects in a directory.

If you want to know exactly which directory objects are secured by the authorization list, IBM
suggests that you use the List Objects Secured by Authorization List (QSYLATLO) API. So that is
what I do. The API documentation reveals that only four parameters are required and that the API
returns the requested information to a user space. And further, the documentation states that the
QSYLATLO API has a number of different return formats, depending on the extent of the
information to return, as well as the file systems included. Some formats include either the
QSYS.LIB, the QDLS or the remaining IFS file systems, or a combination of two or all file systems.
Please check the aforementioned API documentation for all the details (a link to the API
documentation is at the end of this article).

Because the QSYS.LIB and QDLS file system objects are returned in a different format than the
formats of the other (IFS) file systems, I've included two sample programs, one for each variant. The
QSYS.LIB and QDLS return format is simple to process, because it follows the common standard of
adding a fixed entry length to jump from one list entry to the next. But the directory objects format is
a bit more complex.

Whereas the QSYS.LIB and QDLS objects are identified by a 10-byte object name, a 10-byte library
name, and a 10-byte object type, the IFS objects are identified by a name of varying length. The
return format for these objects is therefore made up of a fixed-length data structure, which provides
the offset to a path name data structure, in turn including a path name of varying length. Here's the
ATLOO0210 entry data structure:

**—— Authorization list IFS object entry

D ATLO0210 Ds Qualified

D Based(pLstEnt)
D OfsPthNam 101 O

D LenPthNam 101 O

D ObjTyp 10a

http://iprodeveloper.com/print/rpg-programming/apis-example-authorization-list-apis... 04-04-2014

APIs by Example: Authorization List APIs and Secured Objects Page 3 of 5

D AutHlr la
D ObjoOwn 10a
D ObjAtr 10a
D TxtDsc 50a
D ObjPgp 10a
D la
D AspDev 10a

The space pointer, which defines the location of the ATLO0200 data structure, is initially set to the
user space list offset address provided by the user space generic header information:

pLstEnt = pUsrSpc + UsrSpcHdr.OfsLst;

And here's the path name data structure, which is located at the offset specified by the OfsPthNam
subfield in the preceding example and has the length specified by the adjacent LenPthNam subfield:

**-— API path

D Qlg Path Name Ds Qualified
D Based(pQlg Path Name)
D CcsId 101 0

D CtrId 2a

D LngId 3a

D 3a

D PthTypl 101 0O

D PthNamLen 10i O

D PthNamDlm 2a

D 10a

D PthNam 5000a

The Qlg_Path_Name structure is also based on a pointer, which is set by the following statement.
Notice that the Qlg_Path_Name offset that the QSYLATLO API returns is calculated from the
beginning of the user space, as opposed to the beginning of the ATLO0210 list entry.

pPQlg Path Name = pUsrSpc + ATLO0210.0fsPthNam;

The PthNam varying-length variable that stores the retrieved path name is then updated by the
following statement:

PthNam = %Subst(Qlg Path Name.PthNam

1
Qlg Path Name.PthNamLen
)7

Variable PthNam now holds the actual IFS object name (and length), and after this information has
been passed back to the caller in a message, the list processing continues. To advance to the next list
entry, I need to calculate the distance in bytes between the current list entry and the next, which the
following statement takes care of:

pLstEnt += UsrSpcHdr.SizLstEnt +
($Size(Qlg Path Name) -
$Size(Qlg Path Name.PthNam)) +
Qlg Path Name.PthNamLen;

http://iprodeveloper.com/print/rpg-programming/apis-example-authorization-list-apis... 04-04-2014

APIs by Example: Authorization List APIs and Secured Objects Page 4 of 5

As I mentioned earlier, this calculation deviates from the usual simple addition of a fixed entry
length because of the variable length of the path name, so let me explain what I'm doing.

1. Before the preceding calculation, the pLstEnt pointer that the ATLO0210 data structure is
based on points to the beginning of the current list entry.

2. The length of the fixed part of the ATLO0210 data structure is defined by the List Entry Size
specified in the user space generic header information. This length is added to pLstEnt:

pLstEnt += UsrSpcHdr.SizLstEnt

3. The next length that I need to add is the fixed part of the path name structure. This length is
calculated by subtracting the length of the PthNam subfield from the total length of the
Qlg_Path_Name data structure:

+ (%$Size(Qlg Path Name) - %Size(Qlg Path Name.PthNam))

4. And finally, T add the actual length of the current path name to arrive at the beginning of the
next entry:

+ Qlg Path Name.PthNamLen

To avoid referring to an address outside of the user space list, the calculation is performed only as
long as there are more list entries to retrieve. The actual number of list entries is also specified in the
user space generic header.

To call the sample programs, specify the following statements from a command line (or use the
SBMJOB command to submit the execution to batch):

Call Pgm(CBX1592) Parm("')
- returns IFS directory objects for the specified authorization list.
Call Pgm(CBX1593) Parm("')
- returns QSYS.LIB and QDLS objects for the specified authorization list.

Both sample programs return a message to the caller for each object retrieved, as well as a final
completion message specifying the total number of objects retrieved. For batch jobs, the messages
appear in the job log.

Now that I can retrieve IFS directory objects secured by a specific authorization list, I have also
created the building blocks required to create my own Display Authorization List IFS Objects
(DSPAUTLIFS) command that is currently missing. That task will be the focus of the next APIs by
Example.

This APIs by Example includes the following sources

CBX1591 -- Check Authorization List Size - CPP
CBX1591H -- Check Authorization List Size - Help
CBX1591X -- Check Authorization List Size

http://iprodeveloper.com/print/rpg-programming/apis-example-authorization-list-apis... 04-04-2014

APIs by Example: Authorization List APIs and Secured Objects

CBX1592 -- Retrieve Authorization List IFS Objects - example
CBX1593 -- Retrieve Authorization List QSYS Objects - example

Compilation instructions are in the source headers, as usual.

Page 5 of 5

For the CHKAUTLSIZ command to run on releases V5R2 and V5R3, the following PTFs need to be
installed. For both releases, the PTFs in question are included in CUM packages from early this year,

C6045520 and C6080530, respectively.

o The QSYRTVAI API V5R2 & V5R3 APAR
e The QSYRTVAI API V5R2 & V5R3 QSYSINC include APAR
o The QSYRTVAI API V5R3 PTF cover letter

This article demonstrates the following APIs

Retrieve Authorization List Information (QSYRTVAI) API
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/apis/gsyrtvai.htm

List Objects Secured by Authorization List (QSYLATLO) API
http://publib.boulder.ibm.com/infocenter/iseries/vsr3/topic/apis/gsylatlo.htm

Send Program Message (QMHSNDPM) API
http://publib.boulder.ibm.com/infocenter/iseries/vsra3/topic/apis/QMHSNDPM.htm

You can retrieve the source code for this API example from the following link:
http://www.pentontech.com/IBMContent/Documents/article/5291 1 AuthList.zi

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-authorization-list-apis-

and-secured-objects

http://iprodeveloper.com/print/rpg-programming/apis-example-authorization-list-apis...

04-04-2014

