
print | close

APIs by Example: Hidden Job SQL Information Exposed by
Retrieve Job Information API

System iNetwork Programming Tips Newsletter

Carsten Flensburg

Carsten Flensburg

Thu, 04/28/2011 (All day)

In the preceding installment of the APIs by Example column, I showed an example

of how APIs at times offer access to more detailed information than corresponding

system CL commands. I also demonstrated how you, as an API programmer, can

add more functionality and other enhancements when you create your own API-

based versions of system CL commands. The Display Job Open Files

(DSPJOBOPNF) command presented last time is today accompanied by yet another

example of exploiting system APIs' access to useful information not easily obtained elsewhere.

Although the Display Job (DSPJOB) and Work with Job (WRKJOB) commands and their related

display panels have been enhanced repeatedly over time in order to reflect the conceptual changes

and functional enhancements provided for the IBM i OS job entity—such as activation groups,

mutexes, and threads—for some reason, IBM has not yet offered much detail as far as job SQL

information is concerned—in terms of the mentioned CL commands, that is. The Retrieve Job

Information (QUSRJOBI) API, however, has for some time been supporting a return format

exposing a job's SQL-related information. And with release 6.1, this offering has been significantly

enhanced with many new job SQL attributes.

The QUSRJOBI API job information return format name for SQL information is JOBI0900, and this

format is valid only for active jobs. For jobs waiting on a job queue or jobs that have completed, no

SQL information is available. I'm using the JOBI0900 SQL information format as the foundation for

the Display Job SQL Information (DSPJOBSQLI) command that I've created to accompany today's

APIs by Example article. Since release 6.1's predecessor, release 5.4, also added vital information to

the JOBI0900 return format, the DSPJOBSQLI command was designed to support this release as the

earliest.

While developing the DSPJOBSQLI command, however, I ran into some troubles concerning the

data actually returned by the QUSRJOBI API for the JOBI0900 return format. For release 5.4 and,

for example, prestart jobs waiting to become active, it turned out that some parts of the JOBI0900

format contained "garbage" data. I've reported the issue to IBM, and as of this writing, I'm still

waiting for IBM's response. It appears, though, that the issue has disappeared on release 6.1, so for

now I've coded a workaround to ensure that the DSPJOBSQLI CPP does not fail due to invalid data

when run on release 5.4.

The QUSRJOBI API parameter interface as such is quite simple, yet the API is capable of accessing

lots of job information, all divided into currently 12 different return formats, at release 7.1:

 JOBI0100 Basic performance information

 JOBI0150 Additional performance information

Page 1 of 10APIs by Example: Hidden Job SQL Information Exposed by Retrieve Job Information...

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-hidden-job-sql-inform...

 JOBI0200 WRKACTJOB information

 JOBI0300 Job queue and output queue information

 JOBI0400 Job attribute information

 JOBI0500 Message logging information

 JOBI0600 Active job information

 JOBI0700 Library list information

 JOBI0750 Extended library list information

 JOBI0800 Active job signal information

 JOBI0900 Active job SQL information

 JOBI1000 Elapsed performance statistics

As mentioned, today's article covers the use of format JOBI0900 and the active job SQL information

provided by that format. For more details on the many other formats, I suggest you follow the link at

the end of this article pointing to the QUSRJOBI API documentation in the IBM i Information

Center. As for the QUSRJOBI API, I've included the parameter list from said documentation below:

 Required Parameter Group:

 1 Receiver variable Output Char(*)

 2 Length of receiver variable Input Binary(4)

 3 Format of receiver information Input Char(8)

 4 Qualified job name Input Char(26)

 5 Internal job identifier Input Char(16)

 Optional Parameter Group 1:

 6 Error code I/O Char(*)

 Optional Parameter Group 2:

 7 Reset performance statistics Input Char(1)

The first and second parameter defines the program variable available for the QUSRJOBI API to

return the selected job information as well as the size of this variable, respectively. The third

parameter specifies the format name defining the specific type of job information that you want to

obtain; for the example at hand, this will be the JOBI0900 format, as explained above.

As the fourth and fifth parameter, you identify the job by job name, user name, and job number, or

by the internal job identifier. The latter is a system internal identifier of any given job returned by

other APIs, to let subsequent API calls locate the job faster than is possible with the qualified job

name. In this case, I use the qualified job name because this is what the DSPJOBSQLI command

interface provides.

For the QUSRJOBI API, the standard API error data structure is an optional sixth parameter. This

implies that you do not need to specify a parameter for the error data structure, unless, of course, you

want to handle errors encountered by the API by means of this data structure, or unless you want to

specify the seventh parameter defining whether the specified job's performance statistics should be

reset. The latter parameter, however, applies only to the QUSRJOBI API's format JOBI1000,

returning elapsed performance statistics. In short, optional parameters turn into required

parameters if you want to specify subsequent parameters. And if optional parameters are grouped,

you have to specify all parameters in the group if you specify one.

Page 2 of 10APIs by Example: Hidden Job SQL Information Exposed by Retrieve Job Information...

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-hidden-job-sql-inform...

As for the optional API error data structure, the consequence of not specifying this is that the API

being called signals any encountered errors by issuing an exception message to the API caller. You

will therefore in your code need to cater for an exception message being returned by the API, in case

you leave out the optional error data structure parameter. You have a number of options as far as

evasive coding techniques are concerned, including coding a Monitor group, a CallP(e) error

operation code extender followed by a %Error condition, or a Program Status Subroutine (*PSSR).

In the code provided today, I do, however, employ an API error data structure and use this to

establish whether any errors were encountered when calling the QUSRJOBI API, letting me deal with

the situation accordingly. Anyway, here's the command prompt, exposing the very simple parameter

interface of the DSPJOBSQLI command:

 Display Job SQL Information (DSPJOBSQLI)

 Type choices, press Enter.

 Job name * Name, *

 User Name

 Number 000000-999999

 Output * *, *PRINT

You specify the qualified job name and your preference in terms of whether the command output

should be displayed or printed with your job's spooled output. As always, a help text panel group is

included to further explain the command and its parameters. The type and extent of job SQL

information being displayed or printed depends on the type of SQL processing performed by the

specified job as well as the release on which the command is run. Below I've included an example of

an SQL Server job and the information returned on a release 5.4 system:

 Display Job SQL Information

 WYNDHAMW

 23-04-11

 12:07:19

 Job : QSQSRVR Type :

*BATCH

 User : QUSER Status :

*ACTIVE

 Number : 102037 SQL server mode . . :

*CURJOB

 RDB name : WYNDHAMW

Page 3 of 10APIs by Example: Hidden Job SQL Information Exposed by Retrieve Job Information...

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-hidden-job-sql-inform...

 Query options library . . :

 SQL statement name . . . : SQLSTATEMENT000021

 SQL open cursors : 1

 SQL pseudo closed cursors : 0

 Cum number of SQL cursors:

 Full opens : 7

 Pseudo opens : 23

 Server mode:

 Connecting job : 102031/QYPSJSVR/QYPSJSVR

 Connecting thread . . . : 00000044

 More...

 F3=Exit F5=Refresh F12=Cancel F22=Display entire field

Again, the panel and all its sections and fields displayed are documented with cursor-sensitive help

text that should cover any doubts about the exact interpretation of the screen content. The

information displayed includes the current or most recently run SQL statement in the specified job,

as in the example below. Note that the Time started information is shown only for currently active

SQL statements:

 Display Job SQL Information

 WYNDHAMW

 23-04-11

 12:07:19

 Job : QSQSRVR Type :

*BATCH

 User : QUSER Status :

*ACTIVE

 Number : 102037 SQL server mode . . :

*CURJOB

Page 4 of 10APIs by Example: Hidden Job SQL Information Exposed by Retrieve Job Information...

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-hidden-job-sql-inform...

 Current SQL statement:

 Status : *COMPLETED

 CCSID : 65535

 Time started :

 Statement : UPDATE QMGTC.QAYPSJDT SET NAME = ?,

OWNER = ?, EI

M_ID = ?, CLASS = ?, CATEGORY = ?, DESCRIPTION = ?, SHARING = ?,

STATUS = ?, V

ERSION = ?, CREATEDDATE = ?, CHANGEDDATE = ?, DATASIZE = ?, DATA = ?

 WHERE MCK

EY = ?

 Bottom

 F3=Exit F5=Refresh F12=Cancel F22=Display entire field

The current SQL statement Coded Character Set Identifier (CCSID), according to the API

documentation, defines the CCSID of the current SQL statement string. During my tests on systems

at release 5.4 and 6.1, however, it quickly turned out that the SQL statement string appears to be

returned in the job CCSID of the job performing the QUSRJOBI API call. I have not yet had a chance

to run this observation by IBM, so I've included code in the DSPJOBSQLI CPP to let you convert the

SQL statement string, should this behavior change in the future. This is the part of the code that

you'll need to change:

 // The Current SQL statement appears to be returned in the job

 // CCSID. Should this change in the future, you can activate

 // CCSID-based conversion of the SQL statement string by removing

 // the double slashes (//) for the statement below:

 //

 // CurSqlStmLng = CvtStrCcsId(JOBI0900.SqlStmCcsId

 // : %Subst(JOBI0900

 // : JOBI0900.SqlStmOfs + 1

 // : JOBI0900.SqlStmLen

 //));

 //

Page 5 of 10APIs by Example: Hidden Job SQL Information Exposed by Retrieve Job Information...

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-hidden-job-sql-inform...

 // If you activate CCSID-based conversion of the SQL statement

 // string, you must also comment out or remove the statement

 // below:

 CurSqlStmLng = %Subst(JOBI0900

 : JOBI0900.SqlStmOfs + 1

 : JOBI0900.SqlStmLen

);

While performing my tests, I also experienced the QUSRJOBI API returning SQL cursor names that

do not conform to the regular IBM i naming convention. Some SQL cursors were named *DUMMY

and had binary data appended, while other SQL cursor names were preceded by a single blank

character and also had binary data appended. Here's IBM's explanation of that finding:

*DUMMY cursors exist when unique SQL statements are prepared using a statement

name that isn't unique. The SQL cursor is changed to a *DUMMY cursor to allow the

possibility of the cursor being re-used in the future.

Prepared SQL statements are maintained within a thread scoped internal data structure

called the Prepared Statement Area (PSA). This structure is managed by the database

and can be compressed. The initial threshold of the PSA is small and gradually grows

through use. For an application with heavy *DUMMY cursor use, they will observe

*DUMMY cursors being hard closed at each PSA compression.

The QSQBIGPSA data area control can be used to indicate that the application wants to

start with a large size for the PSA threshold. By using this option, the application will

skip all the PSA compressions it takes to reach a large PSA capacity.

The QSQCSRTH data area control can be used to limit the number of *DUMMY cursors.

*DUMMY cursors are hard closed on PSA compression and during the cleanup

processing of a PREPARE statement when the threshold is exceeded. The default

threshold level is 150.

' CURSR' cursors are created when re-preparing a statement where the statement

results in an internal cursor being created (cursor name is ' CURSR'). When the

statement is re-prepared, the internal cursor for the previous statement is changed to a

dummy cursor.

We are unable to turn the CURSR named cursor into a more easily consumed name. We

precede CURSR with the blank character to insure that our internal cursor does not

conflict with an actual user declared cursor. The decision to use the space leading name

approach was made a long time ago. The API documentation will be updated in the next

release.

In addition to the job SQL information demonstrated in the above example, other SQL-related job

attributes may be displayed, depending on the type of SQL processing performed by the job in

question. This includes details such as:

• SQL object name, library, and type (*PGM, *SRVPGM, *SQLPKG)

• SQL handle and descriptor counts

• SQL client registry details (application name, program ID, user ID, etc.)

Page 6 of 10APIs by Example: Hidden Job SQL Information Exposed by Retrieve Job Information...

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-hidden-job-sql-inform...

• SQL interface details (interface name, type, and level)

• Server job local port number

• Client IP address and address type for server job

Most of the above SQL information was added to format JOBI0900 with release 6.1, so it will not be

available when the DSPJOBSQLI command is run on release 5.4.

In order to demonstrate the practical use of the DSPJOBSQLI command—as well as the

DSPJOBOPNF command presented last time—I've also included a Work with SQL Server Jobs

(WRKSQLSVR) command with today's article. The WRKSQLSVR command lets you list all your

system's SQL server jobs, based on user name, connecting user name, job status, and/or current user

name. The SQL server jobs are named QSQSRVR and identified by the server type job attribute

QIBM_SQL. The QSQSRVR SQL server jobs are employed by many different types of applications.

I've included a list below of various application types taking advantage of the QSQSRVR jobs,

excerpted from an IBM Technote:

• SQL CLI applications, which enable the SQL_ATTR_SERVER_MODE environment attribute

• Native JDBC applications

• PHP applications, which use IBM DB2 extensions

• WebSphere Application Server

• IBM Directory Server

• IBM Management Central

To monitor these applications and the activity they are performing through the QSQSRVR SQL

server jobs, the WRKSQLSVR command comes in handy. Here's the WRKSQLSVR command

prompt:

 Work with SQL Server Jobs (WRKSQLSVR)

 Type choices, press Enter.

 User name *ALL Name, generic*,

*ALL...

 Connecting user *ALL Name, *ALL

 Job status *ACTIVE *ACTIVE, *JOBQ,

*OUTQ...

 Current user *ALL Name, *ALL

Running the WRKSQLSVR command with default parameters as in the following example

 WRKSQLSVR USER(*ALL)

 CONNUSER(*ALL)

 STATUS(*ACTIVE)

Page 7 of 10APIs by Example: Hidden Job SQL Information Exposed by Retrieve Job Information...

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-hidden-job-sql-inform...

on my system returns the list panel displayed below:

 Work with SQL Server Jobs

 WYNDHAMW

 23-04-11

 11:58:46

 User . . . : *ALL Connect user: *ALL

 Type options, press Enter.

 2=Change 4=End 5=Work with 8=Job SQL information

10=Display job log

 11=Job open files 12=Connecting job 14=Connecting user jobs

 Current ----------Connecting-----

 Opt Job User ---Status--- Job User

 Number

 QSQSRVR QDIRSRV ACTIVE CNDW QDIRSRV QDIRSRV

091475

 QSQSRVR QDIRSRV ACTIVE CNDW QDIRSRV QDIRSRV

091475

 QSQSRVR QDIRSRV ACTIVE CNDW QDIRSRV QDIRSRV

091475

 QSQSRVR QDIRSRV ACTIVE CNDW QDIRSRV QDIRSRV

091475

 QSQSRVR QDIRSRV ACTIVE CNDW QDIRSRV QDIRSRV

091475

 QSQSRVR QSECOFR ACTIVE CNDW QYPSJSVR QYPSJSVR

 102031

 QSQSRVR QSECOFR ACTIVE CNDW QYPSJSVR QYPSJSVR

 102031

 QSQSRVR QSECOFR ACTIVE CNDW QYPSJSVR QYPSJSVR

 102031

 More...

 Parameters or command

 ===>

 F3=Exit F4=Prompt F5=Refresh F6=SQL commands F9=Retrieve

F11=View 2

 F12=Cancel F21=Print list F22=Work with active jobs

F24=More keys

Page 8 of 10APIs by Example: Hidden Job SQL Information Exposed by Retrieve Job Information...

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-hidden-job-sql-inform...

The list panel options in addition to regular job administration tasks such as change, end, work with

jobs, and display the job log also let you run the DSPJOBSQLI and DSPJOBOPNF commands for the

selected job(s) using options 8 and 11. List panel options 12 and 14 let you execute the WRKJOB and

WRKUSRJOB commands for the connecting job and connecting job's current user profile,

respectively. For more details, please refer to the WRKSQLSVR command's and list panel's help text.

This APIs by Example includes the following sources:

CBX228 -- RPGLE -- Display Job SQL Information - CPP

CBX228E -- RPGLE -- Display Job SQL Information - UIM Exit Program

CBX228H -- PNLGRP -- Display Job SQL Information - Help

CBX228P -- PNLGRP -- Display Job SQL Information - Panel Group

CBX228X -- CMD -- Display Job SQL Information

CBX229 -- RPGLE -- Work with SQL Server Jobs - CCP

CBX229E -- RPGLE -- Work with SQL Server Jobs - UIM General Exit Pgm

CBX229H -- PNLGRP -- Work with SQL Server Jobs - Help

CBX229L -- RPGLE -- Work with SQL Server Jobs - UIM List Exit Program

CBX229P -- PNLGRP -- Work with SQL Server Jobs - Panel Group

CBX229V -- RPGLE -- Work with SQL Server Jobs - VCP

CBX229X -- CMD -- Work with SQL Server Jobs

CBX228M -- CLP -- Display Job SQL Information - Build command

CBX229M -- CLP -- Work with SQL Server Jobs - Build command

To create all these objects, compile and run the CBX228M and CBX229M programs, following the

instructions in the source headers. You'll also find compilation instructions in the respective source

headers.

Related Articles:

APIs by Example: List Open Files API, and the Display Job Open Files Command

APIs by Example: Use a Work Management API to List Server Jobs

IBM Documentation:

DB2 for i5/OS: User-Defined Servers to the Rescue

Subsystem Configuration for SQL Server Mode Jobs

i5/OS Server Table

QSYS2.DUMP_SQL_CURSORS procedure

This article demonstrates the following APIs:

Retrieve Job Information (QUSRJOBI) API

Open List of Jobs (QGYOLJOB) API

Retrieve the source code for this API example.

Page 9 of 10APIs by Example: Hidden Job SQL Information Exposed by Retrieve Job Information...

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-hidden-job-sql-inform...

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-hidden-job-sql-

information-exposed-retrieve-job-information-api

Page 10 of 10APIs by Example: Hidden Job SQL Information Exposed by Retrieve Job Informati...

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-hidden-job-sql-inform...

