4/4/2014 APIs by Example: List Open Files API, and the Display Job Open Files Command

B print | close

APIs by Example: List Open Files API, and the Display Job Open Files
Command

SystemiNetwork Programming Tips Newsletter
Carsten Flensburg

Carsten Flensburg
Thu, 03/24/2011 (All day)

IBM initially conceived APIs to provide programmers a well-documented and well-structured
interface to sy stem information that in the pre-API days was obtained by parsing CL
command spooled file output or by calling IBM system internal programs directly. In addition
to APIs' versatility and standardized interfaces, they also often offer much more information
and details than their original CL command counterpart.

Today's APIs by Example demonstrates an APIthat in itself exposes more information about a job's open files
than is available elsewhere. At the same time, true tothe concept of a programming interface, the APTapproach
letsyou further enhance the functionality associated with the resulting Display Job Open Files (DSPJOBOPNF)
CLcommand, compared tothe corresponding native offering. The List Open Files (QDMLOPNF) APIdeliversthe
core command functionality of listing a specified job's currently open file objects.

The IBM CL commands Display Job (DSPJOB) and Work with Job (WRKJOB) both support an OPTION(*OPNF),
which, in the words of the associated help text, performs a similar service: "Files that are open for the job and the
status of sy stem and user files are shown." Programmers often refer to these commands and this option to
examine and verify the files that their programs have opened, and the ty pe of operation being performed
against these files.

You can see the relative record numbers of the file records as they 're being processed, and you can verify the
libraries of the files opened. For anyone who has ever enjoyed the outcome of testing an update program against
a production file, the latter is a very useful capability. There's a column specifying the number of I/O operations
performed tothe respective open files, and information about activation scope and activation groups. For many
programming tasks, the DSPJOB or WRKJOB command's Display Open Files panel will help you get your job
done. But in some situations, this panel has shortcomings.

There's no specification of the individual ty pes of output being performed: write, read, write/read, and other
I/0. You only see the accumulated result in a single column. The limited column size for the I/O count as well as
therelative record number at some point causes overflow for jobs performing either excessive I/O for longer
periods of time or processing large files. Using the function key F5 torefresh the screen after paging down one or
more pages immediately takes you back topage 1. You have noway of limiting the list panel toinclude only
particular files, libraries, ty pes of files, or I/O.

Asupcoming issues of this column will further demonstrate, you have the happy option as an API programmer,
and given the presence of an appropriate API, tobuild the tools y ou need in order to make your job a little easier
and the outcome of y our efforts a little better. For now, since this also presents the initial specifications for the
CPP, let me show you what the DSPJOBOPNF command prom pt looks like:

Display Job Open Files (DSPJOBOPNF)

Type choices, press Enter.

Job name * Name, *
User« « « < < o .. Name
Number 000000-999999
File name *ALL Name, generic*, *ALL
Library« « .« < < < . . . *ALL Name, generic*, *ALL
File type « *ALL *ALL, *BSCF, *BSCF, *CMNF...

http://iprodeveloper.com/print/rpg-prog ramming/apis-example-list-open-files-api-and-display-job-open-files-command 1/6

4/4/2014 APIs by Example: List Open Files API, and the Display Job Open Files Command

+ for more values

I/0 type« *ALL *ALL, *ANYIO, *READ..
+ for more values

Output o . 0 0 L. * *, *PRINT

The command's primary parameter, the job for which tolist the open files, is the only one directly supported by
the QDMLOPNF APL The remaining parameters enabling y ou to qualify which files toinclude in the open files
list are all enforced by the CPP. You can specify a file name or a generic file name, a library name or a generic
library name, and any number of file ty pes and I/O ty pes in order tolist only a specific selection of open files.
The command and all its parameters are documented in more detail in the accompanying online help text panel
group.

Here's the QDMLOPNF API parameter list in its entirety:

Required Parameter Group:

1 Receiver variable Output Char (*)
2 Length of receiver variable Input Binary (4)
3 Format of receiver information Input Char (8)
4 Job identification information Input Char (*)
5 Format of job identification info Input Char (8)
6 Error code I/0 Char (*)

The first and second parameters define the program variable available for the QDMLOPNF APItoreturn the
open file information and the size of this variable, respectively. Since any arbitrary number of files may be open
when the APIis called, it's difficult to predict the exact amount of storage required to hold all available open file
information. Itherefore dynamically allocate storage for the APIreceiver variable. Initially, I allocate enough
storage to cater for approximately 400 open files. This would cover the storage requirement in most cases.
Should it not suffice, however, Irepeat the APIcall following a reallocation of storage based on the actual
amount of open file information available. This approach translates tothe following piece of RPG/IV code:

/Free

ApiRcvSiz = 65535;
POPNFO0100 = $Alloc(ApiRcvSiz);

OPNF0100.BytAvl = *Zero;
DoU OPNF0100.BytAvl *Zero;

If OPNFO100.BytAvl > ApiRcvSiz;

ApiRcvSiz = OPNF0100.BytAvl;
POPNEF0100 = $ReAlloc(pOPNF0100: ApiRcvSiz);
EndIf;

LstOpnF (OPNF0100

: ApiRcvSiz
: 'OPNF0100"'
: JIDF0100

: '"JIDFO100"
: ERRCO0100
)7

EndDo;
/End-Free

The QDMLOPNF API call is repeated until the size of the open file information is less than the size of the receiver
variable (or an error condition is signaled in the APIerror data structure). Prior tosubsequent API calls, the
required amount of storage is reallocated. The dynamically allocated storage remains allocated until explicitly
deallocated or the activation group in which the program runs. One method of ensuring that allocated storage is
released properly irrespective of how a program endsistorun a program dynamically allocating storage in a
*NEW activation group.

This approach might, however, in some contexts constitute a bad practice due tothe overhead related to
creating new activation groups. So another method of protecting against storage not being released is to, for

http://iprodeveloper.com/print/rpg-prog ramming/apis-example-list-open-files-api-and-display-job-open-files-command 2/6

4/4/2014 APIs by Example: List Open Files API, and the Display Job Open Files Command

example, register a termination exit procedure. A termination exit procedure is called by the system runtime
whenever a program ends due toanything other than a normal return. The registered exit procedure then is
capable of releasing allocated storage, or performing any other cleanup procedure required. Note that the

sy stem value QENDJOBLMT controls the amount of time available to complete end job processing, in case job
termination is the cause of the program invocation being ended.

The DSPJOBOPNF CPP therefore initially registers the TrmPgm () procedure. The TrmPgm () procedure contains
all the operations that Iwant tobe sure are run before the program for which it is registered ends. If the CPP
ends normally, the final operations performed by the program are to deregister the TrmPgm () termination exit
procedure as a cleanup precaution and then execute the TrmPgm () procedure inline instead. The code snippets
below outline the stepsinvolved in performing this type of program termination control:

**-- Register termination exit:
D CeeRtx Pr ExtProc('CEERTX')
D procedure * ProcPtr Const
D token * Options(*Omit)
D fb 12a Options(*Omit)
**-- Unregister termination exit:
D CeeUtx Pr ExtProc('"CEEUTX')
D procedure * ProcPtr Const
D fb 12a Options (*Omit)
/Free
CeeRtx ($Paddr(TrmPgm): *Omit: *Omit);
CeeUtx (%Paddr (TrmPgm): *Omit);

TrmPgm(*Null);

/End-Free
**-- Terminate program:
P TrmPgm B
D Pi
D pPtr * Const
/Free

CloApp (UIM.AppHdl: CLO NORM: ERRCO0100);
DeAlloc (n) pOPNFO0100;

*InLr = *On;
Return;

/End-Free

P TrmPgm E

The QDMLOPNF API's third parameter specifies the format in which you want the APItoreturn the open file
information. Currently only a single format, OPNF0100, is offered. A similar limited range of options exists for
the fourth parameter, the Job identification information pointing the APIto the job for which to produce the open
file listing. Again, a single format is available, the JIDFo100 format, the name of which must be specified as the
fifth parameter when you call the QDMLOPNF APL Here's the layout of the JIDFo100 parameter structure
using an offset base of 1:

Offset Field Data type
1 Job name Char (10)
11 User name Char (10)
21 Job number Char (6)
277 Internal job identifier Char (16)
43 Reserved Char (2)
45 Thread indicator Binary (4)
49 Thread identifier Char (8)

http://iprodeveloper.com/print/rpg-prog ramming/apis-example-list-open-files-api-and-display-job-open-files-command 3/6

4/4/2014 APIs by Example: List Open Files API, and the Display Job Open Files Command

The JIDFo100 format is used by a number of work management APIs to let you identify the scope of the job
information toreturn right down toindividual thread level. You identify the job by job name, user name, and
job number, or by the internal job identifier. The latter is a system internal identifier of any given job that is
returned by other APIs in order to allow subsequent API calls tolocate the job faster than possible with the
qualified job name. That's all straightforward. Getting the thread indicator right, however, requires a closer
look at the description of this parameter:

Thread indicator

The value that is used to specify the thread within the job for which information is
to be retrieved.

The following values are supported:
0 The value in the thread identifier field should be used to locate the thread.

1 Information should be retrieved for the thread in which this program is running.
The combination of the internal job identifier, Jjob name, job number, and user
name fields also must identify the job containing the current thread.

2 Information should be retrieved for the initial thread of the identified job.

3 Information should be retrieved for all threads within the specified job.

Specifying a zero for the thread indicator parameter causes the QDMLOPNF APItoreturn open file information
only for the thread identified by the thread identifier parameter. Specifying the value one retrieves
information only for the job calling the QDMLOPNF APL Entering job identification values identifying another
job than the current one causes the API call tofail. Values two and three both support current as well as other
jobs, but the value two only returnsinformation for the specified job's initial thread. In this case, Iwant to see
all open files associated with any given job, soIspecify the value three for the thread indicator parameter.

As for the sixth and final API parameter, the AP error data structure format ERRCo100, this hasbeen
demonstrated and discussed to great extent in other, earlier articles. I've included links to articles discussing the
concept of the APIerror data structure as well asdynamic memory allocation at the end of this article, in case
you want toread up on the details and specifics. In the same section, you'll also find a number of links to IBM
documentation explaining some of the other concepts discussed or involved in today's article or code.

Now, on tothe outcome of our efforts so far. The Display Open Files panel presented by the DSPJOBOPNF
command mainly differs from the original version in that the primary list view panel showing the open file /O
information has been divided into two panels. The initial panel displayed identifies the open file and includes
information about the file ty pe, member/device name, and relative record number:

Display Open Files WYNDHAMW
11-03-11 15:48:40
Job: QPADEV0007 User: CARSTEN Number : 966052
Open data paths : 4
Member/ Record File ---Open---- Relative
File Library Device Format Type Opt Shr Nbr Record
QSN132 QSYS CF101HOA USRRCD DSP IO NO
QDUODSPF QPDA CF101HOA MSGSFC DSP IO NO
QDUI132 QSYS CF101HOA USRRCD DSP IO NO
QAOKLO2A QUSRSYS QAOKLO2A WOSFMTO1 LGL I YES 1 60
Bottom
Press Enter to continue.
F3=Exit F5=Refresh Fll=Display 1/0 details Fl2=Cancel F24=More keys

http://iprodeveloper.com/print/rpg-prog ramming/apis-example-list-open-files-api-and-display-job-open-files-command 4/6

4/4/2014 APIs by Example: List Open Files API, and the Display Job Open Files Command

The function keys let you toggle the list views, execute the Work with Job (WRKJOB) command, and position
the open files list to top and bottom, respectively. Function key F10 lets you move the list record selected with
the cursor tothe top of the panel. Pressing function key F5 maintains the list's current position based on the top
file's ordinal number in the list. This implies that if files preceding the current top file have been opened or
closed since the list was last built, the top file may consequently change. Under most circumstances, however,
the top file remains the same following a list refresh.

The second open files list view contains the detailed open file I/O information:

Display Open Files WYNDHAMW
11-03-11 15:56:56
Job: QPADEV0007 User: CARSTEN Number: 966052
Open data paths : 4
———————————————————— I/0 Count--=--=--=-=-=-=-————--—-—-——
File Library Read Write Write/Read Other I/0
QSN132 QsYs 0 0 4 1
QDUODSPF QPDA 73 409 1 1
QODUI132 QSYS 0 0 12 1
QAOKL0O2A QUSRSYS 1 0 0
Bottom
Press Enter to continue.
Fl10=Move to top Fl16=Job menu F17=Top F18=Bottom F24=More keys

Asthe above open files list panel example demonstrates, for each open file listed, the following I/O event ty pes
are counted individually:

Read The number of successful read operations. If record blocking is not in
effect for the file, this is the number of records. If record blocking is
in effect for the file, this is the number of record blocks. A read in this
context defines the transfer of a record or a block of records from a file
to a program. The data is made available to the program once the read has
been successfully completed.

Write The number of successful write operations. If record blocking is not in
effect for the file, this is the number of records. If record blocking is
in effect for the file, this is the number of record blocks. A write in
this context defines the transfer of a record or a block of records from a
program to a file.

Write/ The number of successful write/read operations. A write/read in this

Read context defines the combination of write and read as one single operation.
An example of a combined write/read operation is a write performed to a
display file format, which then immediately after the completed write
operation waits for an input operation being performed to the same
display file format.

Other The number of successful I/0 operations of the following types:
I/0 update

delete

change end-of-data

force end-of-data

force end-of-volume

release record lock

acquire/release program device

O O 0 O o0 o0 o

AsImentioned earlier, you can use the function key F5 torefresh the screen and thereby the I/O count. The
DSPJOBOPNF command's third list view panel essentially displaysthe same activation group information as
the native version, soIdon't gointo more details here. All panels as well as the list columns are further

http://iprodeveloper.com/print/rpg-prog ramming/apis-example-list-open-files-api-and-display-job-open-files-command

5/6

4/4/2014 APIs by Example: List Open Files API, and the Display Job Open Files Command

explained in the cursor-sensitive help text included with the DSPJOBOPNF command.

This APIs by Example includes the following sources:

CBX227 -- RPGLE -- Display Job Open Files - CPP

CBX227FE -- RPGLE -- Display Job Open Files - UIM Exit Program
CBX227H -- PNLGRP -- Display Job Open Files - Help

CBX227P -- PNLGRP -- Display Job Open Files - Panel Group
CBX227X -- CMD -- Display Job Open Files

CBX227M -- CLP -- Display Job Open Files - Build command

To create all these objects, compile and run the CBX227M program, following the instructions in the source
header. You'll also find compilation instructionsin the respective source headers.

Related Articles:

A Beginner's Guide to APIs (API Error Data Structure)

Introduction to Pointers in RPG (Dvnamic Memory Allocation)

IBM Documentation:

Work Management Job Concepts - Jobs

Threads

Memory Management Operations (RPG/IV)

Managing the Default Heap Using RPG Operations

Jobs system values: Maximum time for immediate end

Data Management Operations Overview

Data Management Manual (PDF)

This article demonstrates the following APIs:

List Open Files (QDMLOPNF) API

Register Call Stack Entrv Termination User Exit Procedure (CEERTX) API

Unregister Call Stack Entry Termination User Exit Procedure (CEEUTX) API

Retrieve the source code for this API example.

Source URL: http://iprodev eloper.com /rpg-programming /apis-example-list-open-files-api-and-display -job-
open-files-command

http://iprodeveloper.com/print/rpg-prog ramming/apis-example-list-open-files-api-and-display-job-open-files-command 6/6

