
print | close

APIs by Example: Data Queue APIs and CL Commands, Part 2

System iNetwork Programming Tips Newsletter

Carsten Flensburg

Carsten Flensburg

Thu, 12/14/2006 (All day)

As I discussed in part 1 of this series (a link to part 1 is at end of this article), data queues offer a brilliant method

of program-to-program communication. The Distributed Data Management (DDM) type of data queues offer a

way to extend this capacity to include system-to-system communication.

In the past, DDM data queues, originally based on the SNA facility, were often challenging to configure, especially

as TCP/IP became the preferred communication protocol. But with the introduction of relational database (RDB)

–based identification of a remote system, this challenge was dramatically reduced.

In this article, I discuss DDM data queues, and I also add to my collection of "missing" data queue CL commands,

presenting the Copy Data Queue Description (CPYDTAQD) command.

Let's start with DDM data queues. DDM data queues offer a convenient way to let two applications on different

System i computers communicate with each other.

One scenario could be two companies that want to integrate their business applications, because company A just

bought company B. Another scenario could be the desire to integrate a business application running on one

system with a new finance application running on yet another system. And a third example could be a web front-

end application needing realtime access to a back-end business application running on a different server.

As I discussed in part one, using data queues as a communication layer between programs offers a number of

advantages in itself, and these advantages also apply to DDM data queues. In this case, you also gain the

portability aspect: Applications on different servers communicating through remote (DDM) data queues can

easily be consolidated on one server. Restore the application and replace the remote data queue with a local one,

and you're done. The other way around also works, of course.

Using the *RDB option to identify the remote location is the easiest way to configure DDM data queues in today's

TCP/IP networks. The following steps are involved in setting up DDM data queues:

1. On the system on which you want to configure the DDM data queue, use the Work with Relational Database

Directory Entry (WRKRDBDIRE) command to find the relational database name of the remote system. If it

is not already there, use the Add Relational Database Directory Entry (ADDRDBDIRE) command to add it.

Follow the help text of the ADDRDBDIRE command or the IBM Technical Document (see the link for it at

the end of this article) to create the RDB directory entry.

2. On the CRTDTAQ command, specify the RDB name of the server in step 1. I keep the names of the local and

remote data queues the same. In the following example, the RDB server name is CPHDB01, and the data

queue name is WEBINBDQ in library QGPL:

 CRTDTAQ DTAQ(QGPL/WEBINBDQ)

 TYPE(*DDM)

 RMTDTAQ(QGPL/WEBINBDQ)

 RMTLOCNAME(*RDB)

 RDB(CPHDB01)

 TEXT('Web application inbound data queue')

3. To enable the user profile that puts or gets data queue entries on or from the preceding DDM data queue to

successfully connect to the remote system, the user profile and password need to be identical on the two

Page 1 of 5APIs by Example: Data Queue APIs and CL Commands, Part 2

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-data-queue-apis-and-c...

systems. If this is infeasible, you can use a Server Authentication Entry to store the remote user profile

name and password. In the next example, I use the current user profile as the local user profile and the

RDB entry name as the server name to achieve a successful connection with the remote user profile

CPHWEBUSR:

 ADDSVRAUTE USRPRF(*CURRENT)

 SERVER(CPHDB01)

 USRID(CPHWEBUSR)

 PASSWORD(remote password)

Before adding server authentication entries on your system, please refer to "Source System Security in a

TCP/IP Network — Server Authentication" (a link is at the end of this article), which includes a thorough

discussion of the Retain Server Security (QRETSVRSEC) system value.

4. After putting a data queue entry on the WEBINBDQ on the local system, the result is a data queue entry

showing in the WEBINBDQ on the remote system, provided that the data queue exists on the remote

system and that the connection to the remote system was successful. Otherwise, the Send Data Queue

(QSNDDTAQ) API returns an error.

Performing the same drill for the WEBOUTDQ data queue on the two systems should lead to the existence of an

inbound data queue and an outbound data queue on both systems. I usually keep the local data queue on the

system on which the data queue entries are being processed. So I put data queue entries on a DDM data queue,

and I get data queue entries from a local data queue. That way, when sending the data queue entry, I know already

whether the communication was successful, and I also consistently know where to perform recovery and error

processing. In some of my data queue–driven applications, I also use the Retrieve Data Queue Message

(QMHRDQM) API to monitor the content of the inbound data queue, but the QMHRDQM API unfortunately does

not support DDM data queues.

At this point, you're ready to set up the applications that are going to communicate with each other through the

data queues created in the preceding examples. I'll provide an example of such a setup in an upcoming installment

of this article series.

For now, let me close the DDM data queue topic with a little hint for when you're trying to find DDM data queues

on your system: A quick way to identify DDM type data queues is to run the Work with Objects (WRKOBJ)

command. The resulting panel includes the object attribute column, which has a value of DDMDTAQUE for all

DDM type data queues. Try running the following command:

 WRKOBJ OBJ(*ALL) OBJTYPE(*DTAQ)

Look for all data queue objects that have the DDMDTAQUE object attribute. You can use the Display Data Queue

Description (DSPDTAQD) command that I provided in part 1 to display all data queue attributes, regardless of

type.

The next item on the agenda for today is the CPYDTAQD command. Here's what the command prompt looks like:

 Copy Data Queue Description (CPYDTAQD)

 Type choices, press Enter.

 From data queue Name

 Library *LIBL Name, *LIBL, *CURLIB

 To data queue Name

 Library *CURLIB Name, *CURLIB

 Type *STD *STD, *DDM

 Maximum entry length 1-64512

 Force to auxiliary storage . . *NO *NO, *YES

 Sequence *FIFO *FIFO, *LIFO, *KEYED

 Key length 1-256

 Include sender ID *NO *NO, *YES

Page 2 of 5APIs by Example: Data Queue APIs and CL Commands, Part 2

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-data-queue-apis-and-c...

 Queue size:

 Maximum number of entries . *MAX16MB Number, *MAX16MB, *MAX2GB

 Initial number of entries . 16 Number

 Automatic reclaim *NO *NO, *YES

 Remote data queue Name

 Library *LIBL Name, *LIBL, *CURLIB

 Remote location Name, *RDB

 Relational database

 APPC device description . . . *LOC Name, *LOC

 Local location *LOC Name, *LOC, *NETATR

 Mode *NETATR Name, *NETATR

 Remote network identifier . . *LOC Name, *LOC, *NETATR

 Text 'description' *BLANK

 Additional Parameters

 Authority *LIBCRTAUT Name, *LIBCRTAUT...

Because the retrieval of the from data queue's attributes is performed by the CPYDTAQD command's prompt

override program (POP), the copy function is performed when the command is entered, be it on a command line,

in a CLP source member, or on the Submit Job (SBMJOB) command prompt. Any subsequent replacement of the

from data queue involving new queue attributes or any library list look-up resulting in localization of another data

queue with the specified queue name will not therefore be reflected in future executions of the CPYDTAQD

command.

This behavior ensures that the data queue attributes are always predictable in relation to the Send or Receive Data

Queue API calls. For the same reason, if you need to create data queues on the fly in a program, the CRTDTAQ

command should be fully coded in the program (i.e., all crucial attributes should be explicitly specified on the

CRTDTAQ command). Don't rely on the CRTDTAQ command's default parameter settings, because they could be

subject to change in the future by an unforeseen use of the Change Command Default (CHGCMDDFT) command.

The CPYDTAQD command includes full online help documentation. Because the CPYDTAQD command in

essence is a CRTDTAQ command in disguise, I borrowed most of the help text from the CRTDTAQ command's

help text panel group. Such adoption can in some instances be an elegant shortcut to provide online

documentation, so here's a brief recipe for how to achieve that:

1. Identify the Help Panel Group of the source command, the HLPPNLGRP attribute, by running the

following command :

 DSPCMD CMD(CRTDTAQ)

2. Specify the found panel group on an :IMPORT tag in your help panel group, in this case the QHMHCMD

panel group:

 IMPORT PNLGRP='QHMHCMD' NAME='*'.

3. The NAME= attribute of the :IMPORT tag must be either the name of the command parameter whose help

text you want to import or the special value '*'. The latter can be specified only for one :IMPORT tag per

panel group and causes the User Interface Manager (UIM) to look in the specified PNLGRP= for all

unresolved :IMHELP tags. In this case, I'm importing from only one panel group, so using this approach is

the easiest way. Otherwise, I would have to specify an :IMPORT tag for each imported command parameter

help text.

4. For each imported help text, specify the :IMHELP tag, as in the following example for the data queue type

parameter:

 :HELP NAME='CPYDTAQD/TYPE'.Type (TYPE) - Help

 :IMHELP NAME='CRTDTAQ/TYPE'.

 :EHELP.

Page 3 of 5APIs by Example: Data Queue APIs and CL Commands, Part 2

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-data-queue-apis-and-c...

5. Create the panel group and be careful to verify that all imported command parameter help texts have

successfully been resolved:

 Type (TYPE) - Help

 Specifies the type of data queue to be created. A

 standard data queue or a distributed data management (DDM)

 data queue can be created.

*STD

A standard data queue is created. The MAXLEN parameter is required with the use of this value.

*DDM

A DDM data queue is created. This value requires the name of the remote data queue accessed (RMTDTAQ

parameter) and the name of the remote (target) system that the data queue is located on (RMTLOCNAME

parameter).

That's it for now, but in the next installment of APIs by Example, I will continue my coverage of data queue APIs

and data queue CL commands, as well as data queue programming and use.

This APIs by Example includes the following sources:

CBX166 -- Copy Data Queue Description - CPP

CBX166H -- Copy Data Queue Description - Help

CBX166O -- Copy Data Queue Description - POP

CBX166V -- Copy Data Queue Description - VCP

CBX166X -- Copy Data Queue Description

CBX166M -- Copy Data Queue Description - Build commands

To create all these objects, compile and run CBX165M. Compilation instructions are in the source headers, as

usual.

IBM Technical Documents:

Configuring DDM Data Queue Support over TCP/IP:

https://www-

912.ibm.com/s_dir/slkbase.NSF/1ac66549a21402188625680b0002037e/e95c5072635554dd86256e980068aada?

OpenDocument

Assigning a Default User Profile for IBM DRDA over TCP/IP:

https://www-

912.ibm.com/s_dir/slkbase.NSF/643d2723f2907f0b8625661300765a2a/9e61c67ade70359986256afd007cc9f1?

OpenDocument

IBM AnyNet Configuration (SNA over TCP/IP) 1:

https://www-

912.ibm.com/s_dir/slkbase.nsf/1ac66549a21402188625680b0002037e/c5057870085200f8862565c2007cdc47?

OpenDocument

IBM AnyNet Configuration (SNA over TCP/IP) 2:

https://www-

912.ibm.com/s_dir/slkbase.nsf/1ac66549a21402188625680b0002037e/c0e073485d35f074862569da0063626f?

OpenDocument

IBM Info Center Documentation:

Page 4 of 5APIs by Example: Data Queue APIs and CL Commands, Part 2

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-data-queue-apis-and-c...

Source System Security in a TCP/IP Network — Server Authentication - V5R3:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/ddm/rbae5sourcesecurity.htm

Source System Security in a TCP/IP Network — Server Authentication - V5R4:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/ddm/rbae5sourcesecurity.htm

Part 1 of this article series:

Data Queue APIs and CL Commands, Part 1:

http://www.systeminetwork.com/article.cfm?id=53542

This article demonstrates the following data queue API:

Retrieve Data Queue Description (QMHQRDQD) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/qmhqrdqd.htm

All data queue APIs are documented here:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/obj2.htm

You can retrieve the source code for this API example from the following link:

http://www.pentontech.com/IBMContent/Documents/article/53685_149_DataQueue2.zip

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-data-queue-apis-and-cl-commands-

part-2

Page 5 of 5APIs by Example: Data Queue APIs and CL Commands, Part 2

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-data-queue-apis-and-c...

