
print | close

APIs by Example: Cryptographic Services APIs, Part 5

System iNetwork Programming Tips Newsletter

Carsten Flensburg

Carsten Flensburg 

Thu, 01/26/2006 (All day) 

This installment of APIs by Example focuses on the tools required to create and remove data 

encryption keys: the Create Data Encryption Key (CRTDTAK) and Remove Data Encryption Key 

(RMVDTAK) commands, respectively. As its name suggests, the data encryption key is the cipher key 

used to perform the actual encryption of the cleartext string to be encrypted.

In the next installment of this series, I will show you how to use functions (which I'll be providing) to 

successfully complete the cleartext encryption and ciphertext decryption process, using a data 

encryption key.

For now, I'll continue with a very important warning concerning data encryption keys: Removing or 

destroying a data encryption key removes your access to the data encrypted with it as well. 

Consequently, if you cannot restore the data encryption key, you cannot restore your access to the 

encrypted data, if any. A secure backup policy for the key store is therefore mandatory.

The same warning of course applies to the master key and the key-encrypting keys (KEKs). As long as 

you manage these with the tools that I provide with this article, however, there should be no risk of 

accidentally removing these keys. Both the Remove Master Key (RMVMSTK) and the Remove Key 

Encrypting Key (RMVKEK) commands check whether any lower-level keys are encrypted with the 

key that they are about to remove, before doing so.

The details about implementing cryptographic applications in general are beyond this article's scope, 

but if you're facing such a requirement, I would like to draw your attention to a recent iSeries 

Network Webcast, "Practical Tips for Implementing Encryption," featuring security expert and 

author Carol Woodbury and iSeries expert Jon Paris. This Webcast offers a wealth of information 

about how to understand and surmount the challenges involved in analyzing and determining the 

scope of such a project, as well as how to set up secure cryptographic environments and program 

related applications.

Click here to view the recorded Webcast (registration required)

Further, for a broad perspective on the many and different aspects involved in a secure 

implementation of cryptographic applications, I also recommend Bruce Schneier's essay "Security 

Pitfalls in Cryptography": http://www.schneier.com/essay-028.html

And now it's time to have a look at the data encryption key commands: Similar to the Create Key 

Encrypting Key (CRTKEK) command that I provided last time and which stored the specified KEK 

encrypted under the master key, the CRTDTAK command also stores the specified data encryption 

encrypted. At this level, the KEK specified on the CRTDTAK command is used as an encryption key.

The CRTDTAK command performs the following steps:

Page 1 of 5APIs by Example: Cryptographic Services APIs, Part 5

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-service...



1. An algorithm context token is created.

2. A KEK context token is created. The specified KEK label is used to identify the KEK.

3. If the special value *GEN was specified for the key value, the Generate Symmetric Key 

(Qc3GenSymmetricKey) API is called, passing the KEK context token to let the API return the 

new key already encrypted under the KEK.

4. If a key value was specified, the Encrypt Data (Qc3EncryptData) API is called, passing the key 

value and KEK context token.

5. The encrypted data encryption key resulting from step 3 or 4 is stored in the key store 

validation list.

6. The context tokens are destroyed.

Please note that to retrieve the KEK context token in step two, a master key context token is retrieved 

by the function returning the KEK context token. To retrieve a master key context token, a special 

usage authorization is required, as I explained in part three of this series.

Here's what the CRTDTAK command prompt looks like:

                  Create Data Encryption Key (CRTDTAK)       

Type choices, press Enter.                                      

Key label  . . . . . . . . . . .                                

Key encryption key label . . . .                                

Key length . . . . . . . . . . .   16            16, 24, 32     

Key bytes 1-8  . . . . . . . . .   *GEN                         

Key bytes 9-16 . . . . . . . . .   *GEN                         

The key label parameter is the name or identifier of the KEK. Later in the key extraction process, the 

specified KEK label is also used to identify by which KEK a data encryption key is encrypted.

To explain all the command parameters in detail, I provide a help panel group for both the 

CRTDTAK and RMVDTAK commands.

Having built all the key management commands published so far, you should now be able to 

establish a full encryption key hierarchy, as in the following example, that lets the system generate 

the key values:

1. Run the command CRTMSTK

2. Run the command CRTKEK KEYLABEL(CBX_KEK_0001)

3. Run the command CRTDTAK KEYLABEL(CBX_DTAK_0001) KEKLABEL(CBX_KEK_0001)

To be able to run the key management commands above, a user must have usage authorization to the 

CBX_CRYPTO_KEY_MANAGEMENT user function. The command WRKFCNUSG FCNID

(CBX_CRYPTO_KEY_MANAGEMENT) shows you exactly which user profiles are authorized and 

also lets you add or remove user profiles.

Following a successful execution of the preceding commands, you will have a fully operational and 

encrypted data encryption key in your key store. In the next installment of this series, I build a 

sample application that shows how to use this data encryption key to encrypt and decrypt sensitive 

business data.

I've provided the following cryptographic and key management functions with this and previous 

articles in this series:

Page 2 of 5APIs by Example: Cryptographic Services APIs, Part 5

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-service...



GenAesKey() -- Generate AES cipher key                  

GenInzVct() -- Generate initialization vector 

GetAlgCtx() -- Get algorithm context

GetMgtAlg() -- Get key management algorithm context

GetKeyCtx() -- Get key context

RmvAlgCtx() -- Remove algorithm context

RmvKeyCtx() -- Remove key context

EncDtaStr() -- Encrypt data string using context tokens  

DecCphStr() -- Decrypt cipher string using context tokens             

AddKeyEnt() -- Add key entry to key store   

ChgKeyEnt() -- Change key store entry    

ChkSubKey() -- Check sub key existence   

FndNxtKeyE() -- Find next key entry  

FndTopKeyE() -- Find top key entry  

GetKeyAtr() -- Get key attribute   

GetKeySto() -- Get key store  

GetMstKeyLb() -- Get master key label

RmvKeyEnt() -- Remove key store entry   

VfyKeyEnt() -- Verify key store entry

GetFcnUsg() -- Get function usage

GetMstKeyTk() -- Get master key context token

GetKekTkn() -- Get key encryption key context token

I will continue the coverage of the V5R3 Cryptographic Services APIs in the coming APIs by Example 

columns and in the course of that process add to this list of cryptographic and key management 

functions.

NOTE: Before using any or part of the tools I provide in this article series in a production 

environment, I recommend reading all parts of this series and taking into account all 

recommendations and warnings stated in each part of this series.

You can find part one of this article here:

http://www2.systeminetwork.com/article.cfm?id=51236

Part two here:

http://www2.systeminetwork.com/article.cfm?id=51786

Part three here:

http://www2.systeminetwork.com/article.cfm?id=51863

Part four here:

http://www2.systeminetwork.com/article.cfm?id=51962

This APIs by Example includes the following source members:

CBX147 -- Cryptographic key management service program

CBX147B -- Service program binder source

CBX1481H -- Create Key Encryption Key - help

The preceding sources are all revised versions of previously published sources and have been 

updated to support new functions introduced in this article as well as to correct an error in the help 

Page 3 of 5APIs by Example: Cryptographic Services APIs, Part 5

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-service...



panel group. Please replace these sources in your utility library's source files. The CBX149M program 

ensures that the service program gets correctly recompiled.

The following new sources deliver the CRTDTAK and RMVDTAK commands:

CBX1491 -- Create Data Encryption Key - command processor

CBX1491H -- Create Data Encryption Key - help 

CBX1491V -- Create Data Encryption Key - validity checker

CBX1491X -- Create Data Encryption key - command

CBX1492 -- Remove Data Encryption Key - command processor

CBX1492H -- Remove Data Encryption Key - help 

CBX1492V -- Remove Data Encryption Key - validity checker

CBX1492X -- Remove Data Encryption Key - command

I have included a program that performs all necessary command object creation:

CBX149M -- Command objects creation

Compilation instructions are also in the source headers, as usual.

This article demonstrates the following APIs:

Add Validation List Entry (QsyAddValidationLstEntry) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/qsyavle.htm

Change Validation List Entry (QsyChangeValidationLstEntry) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/QSYCVLE.htm

Find First Validation List Entry (QsyFindFirstValidationLstEntry) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/QSYFFVLE.htm

Find Next Validation List Entry (QsyFindNextValidationLstEntry) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/QSYFNVLE.htm

Find Validation List Entry (QsyFindValidationLstEntry) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/QSYFIVLE.htm

Remove Validation List Entry (QsyRemoveValidationLstEntry) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/QSYRVLE.htm

Encrypt Data (Qc3EncryptData) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/qc3encdt.htm

Decrypt data (Qc3DecryptData) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/qc3decdt.htm

Generate Symmetric Key (Qc3GenSymmetricKey) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/qc3gensk.htm

Generate Pseudorandom Numbers (Qc3GenPRNs) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/qc3genprns.htm

Page 4 of 5APIs by Example: Cryptographic Services APIs, Part 5

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-service...



Create Algorithm Context (Qc3CreateAlgorithmContext) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/qc3crtax.htm

Create Key Context (Qc3CreateKeyContext) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/qc3crtkx.htm

Destroy Algorithm Context (Qc3DestroyAlgorithmContext) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/qc3desax.htm

Destroy Key Context (Qc3DestroyKeyContext) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/qc3deskx.htm

Send Program Message (QMHSNDPM) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/QMHSNDPM.htm

Move Program Messages (QMHMOVPM) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/qmhmovpm.htm

Resend Escape Message (QMHRSNEM) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/QMHRSNEM.htm

You can retrieve the source code for this API example from the following link:

http://www.pentontech.com/IBMContent/Documents/article/52017_53_CryptoServices5.zip

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-cryptographic-services-

apis-part-5

Page 5 of 5APIs by Example: Cryptographic Services APIs, Part 5

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-service...


