
print | close

APIs by Example: Valid Target Release Levels for Save
Commands

System iNetwork Programming Tips Newsletter

Carsten Flensburg

Carsten Flensburg

Thu, 04/26/2007 (All day)

In a recent thread in the System iNetwork forums, the question came up whether it is possible to

programmatically retrieve the supported target release values for the Save Object (SAVOBJ) and

Save Library (SAVLIB) commands for any given release. There is actually a positive answer to that

question, as long as you use APIs.

In this article, I present and demonstrate a couple of software product APIs that, when joining forces,

can produce the information sought in the above thread. The Retrieve Product Information

(QSZRTVPR) API can produce a wide range of information about a particular software product,

including a list of valid operating system releases. The Check Target Release (QSZCHKTG) API has,

among other things, the ability to verify if a specific release is a supported target release for the

current release level's save commands.

Part of the API demonstration is handled by three new CL commands that make the target release

information available to programmers:

• Display Target Release (DSPTGTRLS)

• Retrieve Target Release (RTVTGTRLS)

• Check Target Release (CHKTGTRLS)

Although these commands cover most immediate needs in relation to target release information in a

programming context, they might also serve as a starting point for meeting your own, more specific

requirements. Let me begin by showing you how the two software product APIs fit into the scheme.

You can pass a release name to the QSZCHKTG API to verify it's a valid target release for your

system. This is useful for commands supporting a target release parameter, for example. You can

specify either an array of valid target release values or the special value *SAV as input to the API.

With *SAV, the API evaluates the specified target release against an internal register used for the

same purpose by the SAVLIB and SAVOBJ commands. This function is what makes the QSZCHKTG

API so useful for the target release commands.

The QSZCHKTG API further supports the target release special values *CURRENT and *PRV, and

returns the actual release identifiers for these values in a separate output parameter. So, by calling

the QSZCHKTG API specifying either of these values, you get back the VxRxMx formatted value that

the special value resolves to for the current release level of the operating system. For example, for

release level V5R3M0, the *CURRENT special value resolves to V5R3M0 and the *PRV special value

to V5R2M0.

Page 1 of 5APIs by Example: Valid Target Release Levels for Save Commands

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-valid-target-release-le...

Now that I am able to verify whether a specific release level identifier is supported by the save

commands of the current level of the operating system, I need a way to list all possible release levels

of the operating system, to provide the necessary input to the QSZCHKTG API.

The QSZRTVPR API identifies the product load for which to return information based on an input

parameter that defines a product information data structure. This structure can have one of two

formats. Here’s a brief description of the basic format used in this example, PRDI0100:

1. Product ID Char 7 the product ID for which information is

being requested

 You can use a special value for the

product ID:

 *OPSYS The product ID for the

operating system

 for the specified release

level.

2. Release level Char 6 the release level for which information

is being requested;

 the release level must be a valid

special value, or

 be in the format VxRxMy

 You can use the following special values

for the release level:

 *CUR uses the release level of the

currently

 installed operating system

 *ONLY uses the only release level for

which a

 product load is found

 *PRV uses the previous release with

modification

 level 0 of the operating system

3. Product option Char 4 the option number for which information

is being requested;

 use 0000 for the base option

4. Load ID Char 10 the load ID for which information is

being requested;

 for example, 2924 is the load ID for an

English

 national language version (NLV)

 you can use a special value for the load

ID:

 *CODE The Load ID of the code load

for the given

 product ID, release level, and

option.

Page 2 of 5APIs by Example: Valid Target Release Levels for Save Commands

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-valid-target-release-le...

If you run the Display Software Resources (DSPSFWRSC) command and press F11 once, you’ll be

able to recognize many of the above parameter values. For the specific use here, the special values

allowed for the individual parameters will do the job. Product ID *OPSYS, Product option 0000, and

Load ID *CODE ensure that the correct product load is identified for the specified release level.

The QSZRTVPR API supports many different return formats, all of which contain different types of

information for specific product loads. This information includes:

• general information about a product load, including whether the product load is installed or

not

• library, folder, object, and directory list of a product load

• current or previous release level of the operating system

• list of valid release levels of the operating system from a given release level through the

currently installed release level

• primary language ID of a product

You can retrieve much more information using this API — a total of nine different return formats are

supported for V5R3. Check out the manual for details (a link to the API documentation is at the end

of the article).

As you can see from the above list, there's an option to retrieve a list of valid release levels from a

given release through the currently installed release level. Therefore, if you specify a given release as

input to the QSZRTVPR API (e.g., the first one available, V1R3M0), the API will return a list of all

valid releases of the operating system, up to and including the current one. The release list is

returned in the PRDR0700 return format.

Now I have the resource to provide the list of valid release level identifiers for the QSZCHKTG API to

verify. Because target releases normally include only the current and two prior levels of the operating

system, it's probably (and hopefully) overkill in most cases to start the list at V1R3M0. Feel free to

change and adjust as you find appropriate.

The DSPTGTRLS command simply implements the routines described above. The command-

processing program first lists all valid release levels using the QSZRTVPR API, then verifies each one

with the QSZCHKTG API. All release identifiers that pass the test are returned in a separate

completion message to the caller of the DSPTGTRLS command. Consequently, there are no input

parameters to the DSPTGTRLS command.

The RTVTGTRLS command supports three different target release special values as input

parameters to the command:

 Retrieve Target Release (RTVTGTRLS)

 Type choices, press Enter.

 Release *CURRENT *CURRENT, *PRV,

*OLDEST

 CL var for RTNRLS (6) . . Character value

Page 3 of 5APIs by Example: Valid Target Release Levels for Save Commands

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-valid-target-release-le...

You can specify the special value *CURRENT to get the current target release level of the save

commands, *PRV to get the previous one, and *OLDEST to get the earliest target release level. The

resolved target release level is returned in a 6-byte character variable in the VxRxNx format, where x

is a digit from 0–9. I have provided a test CL program to verify the RTVTGTRLS command, and

compile and call CBX1722X to run the test. See the program source for more details.

The final command in today's example is CHKTGTRLS:

 Check Target Release (CHKTGTRLS)

 Type choices, press Enter.

 Target release VxRxMx

This command works similar to the CHKOBJ command in that it returns an exception in the form of

an escape message if the check is not successful. You then have to monitor for this escape message in

the CL program issuing the CHKTGTRLS command to be able to evaluate the outcome of the check.

Look in the CHKTGTRLS command's help text to see the actual escape messages that you can

monitor for this command. If successful, the CHKTGTRLS command returns a completion message

indicating that the check was passed.

Here's an example of how to code the CHKTGTRLS command in a CL program:

 Pgm

 ChkTgtRls TgtRls(V5R1M0)

 MonMsg CPF0000 *NONE Do

 /*-- Insert code to handle missing support of V5R1M0 --*/

 EndDo

 EndPgm

As always, help text is provided for all three commands. Please check out the command help text for

further information.

This APIs by Example includes the following sources:

CBX1721 -- RPGLE -- Display Target Releases - CPP

CBX1721H -- PNLGRP -- Display Target Releases - Help

CBX1721X -- CMD -- Display Target Releases

CBX1722 -- RPGLE -- Retrieve Target Release - CPP

CBX1722H -- PNLGRP -- Retrieve Target Release - Help

CBX1722X -- CMD -- Retrieve Target Release

CBX1722T -- CLP -- Retrieve Target Release - Test

CBX1723 -- CLP -- Check Target Release

CBX1723H -- PNLGRP -- Check Target Release

CBX1723X -- CMD -- Check Target Release

CBX172M -- CLP -- Valid target releases - Build commands

Page 4 of 5APIs by Example: Valid Target Release Levels for Save Commands

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-valid-target-release-le...

To create these objects, compile and run CBX172M. Compilation instructions are in the source

headers as usual.

This article demonstrates the following software product APIs:

Retrieve Product Information (QSZRTVPR) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qszrtvpr.htm

Check Target Release (QSZCHKTG) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qszchktg.htm

You can retrieve the source code for this API example from:

http://www.pentontech.com/IBMContent/Documents/article/54563_197_TargetRls.zip

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-valid-target-release-

levels-save-commands

Page 5 of 5APIs by Example: Valid Target Release Levels for Save Commands

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-valid-target-release-le...

