APIs by Example: Conversion of a Path Name Page 1 of 4

ﬂ print | close

APIs by Example: Conversion of a Path Name

System iNetwork Programming Tips Newsletter

Carsten Flensburg

Carsten Flensburg
Thu, 04/21/2005 (All day)

This week’s APIs by Example will focus on the concept of path name format in general and the
character data conversion required to resolve the path name in particular. As we all know, object and
library names uniquely identify an object in the QSYS.LIB file system. But for APIs to identify objects
through the IFS interface, a path name is instrumental. The path name format is a data structure that
contains the path name as well as information about the character set of the path name.

Here’s a brief description of the path name format structure:

Offset
Dec Hex Type RPG/IV Field
(1) 0 0 BINARY (4) 10i O CCSID
4 4 CHAR (2) 2a Country or region ID
6 6 CHAR (3) 3a Language 1D
9 9 CHAR (3) 3a Reserved
(2) 12 C BINARY (4) 10i O Path type indicator
16 10 BINARY (4) 101 0O Length of path name
(3) 20 14 CHAR (2) 2a Path name delimiter character
22 16 CHAR (10) 10a Reserved
(4) 32 26 CHAR (*) 5000a Path name

(1) The Coded Character Set Identifier (CCSID) defines the CCSID of the ‘Path name’.

(2) Depending on the ‘Path type indicator’, the ‘Path name’ parameter could also be a space pointer
instead of a character string.

(3) The ‘Path name delimiter character’ is returned in the same CCSID as the ‘Path name’ itself.

(4) The asterisk notation really means ‘varying length’, but a length of 5000 bytes should be
sufficient in most situations.

All the details about the path name concept are documented in the Information Center under API
concepts:
http://asq00bks.rochester.ibm.com/iseries/v5r2/ic2924/info/apis/concept.htm

And the Path name format section here:
htip://asqo0bks.rochester.ibm.com/iseries/v5r2/ic2924/info/apis/pns.htm

The path name format is used both as input and output parameter to APIs. For input use, the path
name structure is not as complicated to set up as it might seem initially. Specifying the following
values will tell the API that the path name uses the current job’s settings:

http://iprodeveloper.com/print/rpg-programming/apis-example-conversion-path-name 04-04-2014

APIs by Example: Conversion of a Path Name Page 2 of 4

Field: Value:
CCSID 0
Country or region ID x’ 0000
Language ID x"000000"

Please note that the reserved field must also be set to all x’00’.

The ‘Path type indicator’ will most often have the value zero, which specifies that the path name will
be a character string and that the path name delimiter will be a single character. The ‘Path name
length’, ‘Path name delimiter’, and ‘Path name’ fields are self explanatory.

Here are a few examples of APIs that expect a path name format structure as input parameter:

QSYRTVUA -— Retrieve Users Authorized to an Object API:
http://asqoobks.rochester.ibm.com/iseries/vsr2/ic2924/info/apis/gsyrtvua.htm

QWCLOBJL -— List Object Locks API:
http://asqo0bks.rochester.ibm.com/iseries/v5r2/ic2924/info/apis/qwclobijl.htm

QPOLROR -- Retrieve Object References API:
http://asq00bks.rochester.ibm.com/iseries/vsr2/ic2924 /info/apis/gpolror.htm

When you call an API that outputs a path name format, you'll usually have to face the challenge of
performing character data conversion. This is due to the fact that APIs usually return path name
information in Unicode, because that ensures a correct data representation of the path name,
regardless of which CCSID your job is currently using.

Performing a conversion from Unicode to your job's current CCSID is required for anybody to be able
to read the path name. To give you an example of how this can be achieved, I've written a couple of
commands, both based on the same Command Processing Program (CPP). The CPP retrieves a
specified user profile’s home directory attribute, using the QSYRUSRI (Retrieve User Information)
API.

The QSYRUSRI returns both a user profile’s ‘Locale Path’ and ‘Home Directory’ attributes using the
path name format. In this example, I will focus on the latter, but the processing involved applies to
all path name format structures.

The Display User Directory (DSPUSRDIR) and the Retrieve User Directory (RTVUSRDIR)
commands display and retrieve, respectively, the specified user profile’s home directory.

Here’s what prompting the two commands will display:

Display User Directory (DSPUSRDIR)
Type choices, press Enter.
User profile *CURRENT Name, *CURRENT

Retrieve User Directory (RTVUSRDIR)
Type choices, press Enter.
User profile *CURRENT Name, *CURRENT

http://iprodeveloper.com/print/rpg-programming/apis-example-conversion-path-name 04-04-2014

APIs by Example: Conversion of a Path Name Page 3 of 4

CL var for HOMDIR (1024) . . Character value

The DSPUSRDIR command displays the home directory information in an informational message:

User profile JULIAN home directory is '/home/JULIAN'.

As usual, the commands’ parameters are explained in detail in the included help panel groups.

In the CPP, once the Home Directory path name structure has been returned by the QSYRUSRI API,
I use the QTQCVRT (Convert a Graphic Character String) API to perform the conversion from the
Unicode CCSID to the CCSID of the current job.

The QTQCVRT API is capable of converting a character data string, based on a specified to- and
from-CCSID. This API is a member of the CDRA (Character Data Representation Architecture) API
family, which is described here:
http://asq00bks.rochester.ibm.com/iseries/vsr2/ic2924/info/apis/nls4.htm

As the above documentation reveals, most of the CDRA APIs have a CDR prefix in their name, and
these are located in library QSYS2. A functionally equivalent set of APIs are located in library QSYS,
and instead of a QCD prefix, this set of APIs has names starting with QTQ. To avoid any possible
library list issues, I normally recommend using the QTQ API set.

The CDRA APIs are a bit atypical in how they report back error conditions. Instead of the familiar
ERRC0100 error data structure, a feedback array of three 32-bit binary values are returned. The first
array element holds the status code in its first 16 bits, and the second array element holds the reason
code in the first 16 bits.

In the event of an error condition, the status field and reason code will both be set to non-negative
values, the first indicating the type of error and the second indicating the specific reason. If your
primary intention is to ensure that the CDRA API completed successfully, you can simply specify the
array as 4 byte integers and check that the status field (array element one) is equal to zero.

To fully exploit the CDRA APIs, IBM recommends that you consult the Character Data
Representation Architecture Reference book, SC09-1390-01, which can be ordered in hardcopy from
IBM Library Center:
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US

If spending money on IBM manuals is not included in your budget, I have also found the following
CDRA online documentation:

Character Data Representation Architecture Overview:
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/FOCOVR00/CCONTENTS?
DT=10051110145034

Character Data Representation Architecture Reference and Registry:
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/FOCREF00/CCONTENTS?

DT=19951114134943

Another approach to perform a CCSID based data conversion would be using the iconv() data
conversion APIs that were demonstrated in the Programming Tips Newsletter on April 26, 2001:
http://www2.systeminetwork.com/article.cfm?ID=10193

http://iprodeveloper.com/print/rpg-programming/apis-example-conversion-path-name 04-04-2014

APIs by Example: Conversion of a Path Name Page 4 of 4

For large data buffers or when you have a requirement to perform multiple data conversions, the
iconv() approach works better due to its session-based conversion process.

The conversion initialization is performed as an individual step, returning a handle to the iconv()
function, which can then be run over and over again until the conversion process is complete. At that
point, the conversion session termination is performed in an individual, final step. This way the
overhead from initialization and termination is only incurred one time, although the conversion
process is performed multiple times.

The DSPUSRDIR and RTVUSRDIR commands include the following sources:
CBX134 — Common command processing program.

CBX1341H -- DSPUSRDIR help text panel group.

CBX1341X — DSPUSRDIR command definition source member.

CBX1342H -- RTVUSRDIR help text panel group.

CBX1342X — RTVUSRDIR command definition source member.
Compilation instructions are found in the source headers.

This article demonstrates the following APIs:

Retrieve User Information (QSYRUSRI) API:
http://asqo0bks.rochester.ibm.com/iseries/v5sr2/ic2924/info/apis/gsyrusri.htm

Convert a Graphic Character String (QCDCVRT/QTQCVRT) API:
http://asqoo0bks.rochester.ibm.com/iseries/vsr2/ic2924/info/apis/CDRCVRT.htm

Retrieve Job Information (QUSRJOB) API:
http://asqoobks.rochester.ibm.com/iseries/vsr2/ic2924/info/apis/qusrjobi.htm

Send Program Message (QMHSNDPM) API:
http://publib.boulder.ibm.com/iseries/vsr2/ic2924/info/apis/QMHSNDPM.htm

You can retrieve the source code for this APT example from
http://www.pentontech.com/IBMContent/Documents/article/50774 17 PathNameFmt.zip.

The above article was written by Carsten Flensburg. If you have any questions, you can contact
Carsten at flensburg@novasol.dk.

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-conversion-path-name

http://iprodeveloper.com/print/rpg-programming/apis-example-conversion-path-name 04-04-2014

