APIs by Example: Retrieve Subsystem Entries API Page 1 of 8

ﬂ print | close

APls by Example: Retrieve Subsystem Entries API

System iNetwork Programming Tips Newsletter

Carsten Flensburg

Carsten Flensburg
Thu, 09/21/2006 (All day)

Some APIs can have very complex parameter lists and be an immense challenge to code. Other APIs,
however, are pretty straightforward to tackle. Nevertheless there's also a first time when it comes to
making the acquaintance of such "easy" APISs, so this is the topic for today's API by Example.

In fact, the List Subsystem Entries (QWDLSBSE) API has only four parameters, one of which is the
common API error data structure, so calling the API correctly should hardly pose any insuperable
problems. The API returns the subsystem entry information in a user space, and I therefore focus on
the techniques involved in accessing and retrieving API output from user spaces. To wrap it all up in
a practicable context, I've written the Work with Routing Entry (WRKRTGE) command.

Despite the simplicity, let's start off with the QWDLSBSE API parameter list. Here it is in its entirety:

1. Qualified user space name Input Char (20)
2. List format Input Char (8)
3. Qualified subsystem name Input Char (20)
4. Error code I/0 Char (*)

The user space specified for the first parameter is typically created immediately before calling the
API, using the Create User Space (QUSCRTUS) API. Defining a named constant for the qualified user
space name requires you to specify the name in only one place and ensures that it's the same user
space referenced on all subsequent API calls:

**—-— Global constants:
D USRSPC Q c '"LSTRTGE QTEMP'

The list format can be one of the following seven available formats, one for each different subsystem
entry type that this API supports:

« SBSE0100 Routing entry list

« SBSE0200 Communications entry list

« SBSE0300 Remove locations entry list
» SBSE0400 Autostart job entry list

« SBSE0500 Prestart job entry list

« SBSE0600 Workstation name entry list
» SBSE0700 Workstation type entry list

Because this example requires the routing entry list, SBSE0100 should be specified for the second
parameter.

http://iprodeveloper.com/print/rpg-programming/apis-example-retrieve-subsystem-en... 04-04-2014

APIs by Example: Retrieve Subsystem Entries API Page 2 of 8

The qualified subsystem name must be specified in the same format as the user space parameter, a
10-byte subsystem name followed by a 10-byte library name. Because the qualified subsystem name
also happens to be the WRKRTGE command's only parameter, and CL. commands pass library-
qualified parameters in the same format, I simply pass the CPP's input parameter to the QWDLSBSE
API:

LstSbsEnt (USRSPC Q: 'SBSE(0100': PxSbsNam g: ERRC0100);

The final error code parameter has been discussed previously in great detail in this newsletter. Please
refer to the following "Getting Started with APIs" article for all details:
http://www.SystemiNetwork.com/article.cfm?id=18648

After the call to the QWBLSBSE API, the first thing to do is check whether the call was successful. To
check, we evaluate the Bytes Available subfield in the ERRC0100 data structure.

If ERRC0100.BytAvl = *Zero;
ExSr PrcUsrSpc;
EndIf;

If zero bytes available is returned, it's safe to proceed. Otherwise, you would usually use the
information in the ERRC0100 data structure to format and send an escape message, as in the
following example:

If ERRC0100.BytAvl > *Zero;

If ERRC0100.BytAvl

But in this case, the main candidate that could cause a failure, the
qualified subsystem name, has already been validated in the WRKRTGE
command's validity checking program (VCP), so I leave that out of the
equation here.

If you decide to return an escape message to the caller, be sure to
take into account that sending an escape message immediately
terminates the current call level (i.e., the program sending the
escape message). So you should make sure that necessary cleanup
activities are handled, for example by registering an activation group
exit program using the CEE4RAGE API. Links to API documentation are at
the end of this article.)

The processing of the list data in the user space populated by the
QWDLSBSE API is based on the information in the generic header section
of the user space. The following data structure describes the part of
the layout of this information relevant for this example:

http://iprodeveloper.com/print/rpg-programming/apis-example-retrieve-subsystem-en... 04-04-2014

APIs by Example: Retrieve Subsystem Entries API

Page 3 of 8

**—-— User space generic header:

D UsrSpcHdr Ds Qualified Based(pUsrSpc)
D OfsInpSec 101 Overlay(UsrSpcHdr: 109

D SizInpSec 101 Overlay(UsrSpcHdr: 113

D OfsHdrSec 101 Overlay(UsrSpcHdr: 117

D SizHdrSec 101 Overlay(UsrSpcHdr: 121

D OfsLstEnt 101 Overlay(UsrSpcHdr: 125

D NumLstEnt 101 Overlay(UsrSpcHdr: 133

D SizLstEnt 101 Overlay(UsrSpcHdr: 137

As you can see, the UsrSpcHdr data structure is defined as based on the pointer pUsrSpc. This means
that the data structure maps to whatever location that this pointer is pointing to (i.e., the storage
address defined by the pointer's current value).

After the user space has been created and the QWDLSBSE API has written data to it, I use the
Retrieve Pointer to User Space (QUSPTRUS) API to retrieve the address of the first byte of the user
space:

RtvPtrSpc (USRSPC Q: pUsrSpc);

As the first parameter, I specify the user space's qualified name (using the named constant
mentioned earlier), and if all works out, the QUSPTRUS returns the user space address in the second
parameter. So by simply specifying the pointer that the user space generic header data structure is
based on as the second parameter, I make the information in this data structure immediately
available following the (successful) QUSPTRUS API call.

At the end of this article, I provide a link to the section in IBM's online API manual that describes in
detail the layout of the various user space structures and their internal relationships. I recommend
that you study this information to understand the objectives and thoughts behind this concept. Doing
so will help you write the most flexible and robust code when dealing with APIs and user spaces.

Armed with the information in the user space generic header data structure, I initialize the pointers
that the Input Parameter Section, the Header Section and the List Entry Structure are based on, to
the address returned:

pInpInf = pUsrSpc + UsrSpcHdr.OfsInpSec;
pHdArInf pUsrSpc + UsrSpcHdr.OfsHdrSec;
pLstEnt = pUsrSpc + UsrSpcHdr.OfsLstEnt;

At this point, I have access to the information in the Input Parameter Section and the Header
Section. And if list entries are present, I also have access to the first list entry. However, I do not
access the list entry data until I have verified that there actually is at least one entry in the list. The

http://iprodeveloper.com/print/rpg-programming/apis-example-retrieve-subsystem-en... 04-04-2014

APIs by Example: Retrieve Subsystem Entries API Page 4 of 8

Number of List Entries (NumLstEnt) subfield of the user space header holds that piece of
information:

For Idx =1 to UsrSpcHdr.NumLstEnt;
LstEnt.Option = *Zero;
LstEnt.SegNbr = SBSE0100.SeqgNbr;
LstEnt.RtgPgm g = SBSE0100.RtgPgm qg;
LstEnt.RtgCls g = SBSE0100.RtgCls qg;

If Idx

The preceding code snippet demonstrates how the user space list can be
retrieved, one entry at a time. The For loop executes as many times as
there are list entries available in the user space. For each entry,
the retrieved routing entry information is processed, and finally the
list entry pointer is advanced to the next entry.

The pointer is advanced by means of another header information
subfield called "Size of List Entry." When the pointer is advanced,
it's important to make sure you only do it as many times as there are
list entries. Never point the pointer beyond the end of the list, or
unpredictable results can occur.

Another technique that might be relevant to cover in this context
relates to information being added to API return formats over time.
Often an API data structure will have new fields that are added with a
release upgrade. Other times, changes are introduced by means of PTFs.
When the changes occur during a release upgrade, you can use compiler
directives to distinguish between old and new formats as shown in the
following example. This lets you use the same source member on
different 15/0S releases.

/If Defined(*V5R3M0O)
Format for V5R3 or later
/Else

Format for V5R2 or earlier

/EndIf

http://iprodeveloper.com/print/rpg-programming/apis-example-retrieve-subsystem-en... 04-04-2014

APIs by Example: Retrieve Subsystem Entries API

Another method to safeguard your access to the returned information is to (again) use the
information provided in the user space generic header data structure. For the QWDLSBSE API,
release V5R3 introduced an addition to the SBSE0100 format. Three new resource affinity attributes
were added. To ensure that these fields are referenced only if present, I added the following
statement to the list entry processing part of my code:

If UsrSpcHdr.SizLstEnt >= %Size(SBSE0100);
LstEnt.ThrRscAffGrp SBSE0100.ThrRscAffGrp;
LstEnt.ThrRscAfflvl SBSE0100.ThrRscAfflLvl;
LstEnt.RscAffGrp SBSE0100.RscAffGrp;

EndIf;

Only if the list entry length returned by the QWDLSBSE API is equal to (or longer than) the
SBSE0100 data structure do I access the newly added fields.

When I'm through processing the list, the program continues doing what it's further supposed to do.
There's one final responsibility for the programmer in relation to the user space initially created.
When the program is about to end, it's good practice to perform the necessary cleanup duties and
ensure that the user space is deleted:

D1tUsrSpc(USRSPC Q: ERRC0100);

As for the purpose of all these efforts, let me give you a brief introduction to the WRKRTGE
command. Here's the command prompt:

Page 5 of 8

Work with Routing Entries (WRKRTGE)
Type choices, press Enter.

Subsystem Name
Library Coe e e e e e e *LIBL Name, *LIBL, *CURLIB

You simply specify the name of the subsystem whose routing entries you want to work with, as in the
following example:

WRKRTGE SBS (QINTER)

Running the above command leads to the display of a list panel similar to the one below:

Work with Routing Entries WYNDHAMW

16-09-06 21:05:58

Subsystem . . . : QINTER Subsystem status : *ACTIVE
Library . . . : QSYS

Type options, press Enter.
2=Change 3=Copy 4=Remove

Seq Start
Opt Nbr Program Library Compare value Pos.
10 QCMD QSYS QCMDI 1
15 QCMD QSYS QIGC 1
20 QCMD QSYS QS36MRT 1
40 QARDRIVE QSYS 525XTEST 1

http://iprodeveloper.com/print/rpg-programming/apis-example-retrieve-subsystem-en...

04-04-2014

APIs by Example: Retrieve Subsystem Entries API Page 6 of 8
700 QCL QSYS QCMD38 1
9999 QCMD QSYS *ANY 0
Bottom
Parameters or command
===>
F3=Exit F4=Prompt F5=Refresh F6=Add routing entry
Fll=View 2 Fl2=Cancel F21=Print list F24=More keys

The list panel offers three alternate views, all together displaying all available routing entry
attributes. The list options let you run the three routing entry CL. commands: Change Routing Entry
(CHGRTGE), Add Routing Entry (ADDRTGE) (based on an existing routing entry, thus providing
the copy option), and finally Remove Routing Entry (RMVRTGE).

Among other facilities, the function keys offer access to a print list function, the ADDRTGE
command, and the WRKSBSD (Work with Subsystem Description) command. Cursor-sensitive help
text is also provided for both list panel and command.

If you want to learn more about routing entries and the role they play in how jobs get processed in a
subsystem, follow the link at the end of this article for "How works get processed," as well as the
other links for related aspects of work management.

This APIs by Example includes the following sources:

CBX162 --
CBX162E --
CBX162H --
CBX162P --
CBX162V --
CBX162X --

CBX162M --

Work
Work
Work
Work
Work
Work

Work

with
with
with
with
with
with

with

Routing
Routing
Routing
Routing
Routing
Routing

Routing

Entries -
Entries -
Entries -
Entries -
Entries -

Entries

Entries -

CCP

UIM Exit Program
Help

Panel Group

VCP

Build command

To create all these objects, compile and run CBX162M. Compilation instructions are in the source

headers, as usual.

"How work gets processed":
http://publib.boulder.ibm.com/infocenter/iseries/vsr3/topic/rzaks/rzakshowwrkgetsproc.htm

The CEE4RAGE API documentation:
http://publib.boulder.ibm.com/infocenter/iseries/vsr3/topic/apis/CEE4RAGE.htm

User space structure documentation:
http://publib.boulder.ibm.com/infocenter/iseries/vsr3/topic/apis/usf.htm

This article demonstrates the following APIs:

List Subsystem Entries (QWDLSBSE) API:

http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/apis/qwdlsbse.htm

Retrieve Subsystem Information (QWDRSBSD) API:
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/qwdrsbsd.htm

http://iprodeveloper.com/print/rpg-programming/apis-example-retrieve-subsystem-en... 04-04-2014

APIs by Example: Retrieve Subsystem Entries API Page 7 of 8

Create User Space (QUSCRTUS) API:
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/quscrtus.htm

Delete User Space (QUSDLTUS) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr3/topic/apis/qusdltus.htm

Retrieve Pointer to User Space (QUSPTRUS) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr3/topic/apis/qusptrus.htm

Open Display Application (QUIOPNDA) API:
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/quiopnda.htm

Close Application (QUICLOA) APT:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/apis/quicloa.htm

Display Panel (QUIDSPP) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/apis/quidspp.htm

Put Dialog Variable (QUIPUTV) API:
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/quiputv.htm

Get Dialog Variable (QUIGETV) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/apis/quigetv.htm

Add List Entry (QUIADDLE) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/apis/quiaddle.htm

Get List Entry (QUIGETLE) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/apis/quigetle.htm

Update List Entry (QUIUPDLE) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/apis/quiupdle.htm

Remove List Entry (QUIRMVLE) API:
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/quirmvle.htm

Retrieve List Attributes (QUIRTVLA) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/apis/quirtvla.htm

Set List Attributes (QUISETLA) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/apis/quisetla.htm

Delete List (QUIDLTL) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/apis/quidltl.htm

Print Panel (QUIPRTP) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr3/topic/apis/quiprtp.htm

Add Print Application (QUIADDPA) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr3/topic/apis/quiaddpa.htm

Remove Print Application (QUIRMVPA) API:
http://publib.boulder.ibm.com/infocenter/iseries /vsr3/topic/apis/quirmvpa.htm

http://iprodeveloper.com/print/rpg-programming/apis-example-retrieve-subsystem-en... 04-04-2014

APIs by Example: Retrieve Subsystem Entries API Page 8 of 8

Retrieve Message (QMHRTVM) API:
http://publib.boulder.ibm.com/infocenter/iseries/v5ra3/topic/apis/QMHRTVM.htm

Send Program Message (QMHSNDPM) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr3/topic/apis/QMHSNDPM.htm

Retrieve Object Description (QUSROBJD) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr3/topic/apis/qusrobjd.htm

You can retrieve the source code for this API example from
http://www.pentontech.com/IBMContent/Documents/article/53255 117 RitvSbsEnt.zip

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-retrieve-subsystem-
entries-api

http://iprodeveloper.com/print/rpg-programming/apis-example-retrieve-subsystem-en... 04-04-2014

