
print | close

APIs by Example: Tricky Retrieve APIs and How to Process
the Receiver Variable

System iNetwork Programming Tips Newsletter

Carsten Flensburg

Carsten Flensburg

Thu, 08/26/2010 (All day)

Most retrieve APIs are simple to work with. The data returned is defined by a data structure, and the

information provided is in character or integer format. While often more than one alternative or

accumulating return format is available, each is simple in structure and straightforward to process.

As an example of an API providing alternative return formats, see the Retrieve Job Information

(QUSRJOBI) API, which offers 12 different return formats. As an example of accumulating return

formats, see the Retrieve Member Description (QUSRMBRD) API, which offers three return formats,

the second including the first format, and the third including the second format.

Today, I discuss a couple of return formats that are a bit more challenging to handle. To help me do

that, I've created a Display System Configuration (DSPSYSCFG) command involving the use of many

different retrieve APIs—some of which demonstrate the simple approach of returning data, others a

variety of the more challenging methods. This article's focus is on the latter retrieve API type and

also includes a couple of MI built-ins. In MI built-in terminology, retrieve functionality is referred to

as materialize, and sometimes, when no adequate retrieve API is available, there's a materialize MI

built-in that will fit the bill nicely. More about that in a minute.

The Retrieve System Values (QWCRSVAL) and Retrieve Network Attributes (QWCRNETA) APIs

resemble each other in the way that the return data is requested and how it is returned. Both API

interfaces comply with the documentation below applying to the QWCRSVAL API:

 Required Parameter Group:

 1 Receiver variable Output Char(*)

 2 Length of receiver variable Input Binary(4)

 3 Number of system values to retrieve Input Binary(4)

 4 System value names Input Array(*) of

Char(10)

 5 Error code I/O Char(*)

Parameter 1 defines the storage available to the API to return the requested information. Parameter 3

specifies the number of system values for which to return data and providing the count of the system

value names specified in parameter 4, a simply array of 10-byte character fields, one element for each

specified system value name. Parameter 5 is the standard API error code data structure. If you are

somewhat familiar with APIs in general, the above parameter list should not cause any headache—at

least not at this point.

Page 1 of 12APIs by Example: Tricky Retrieve APIs and How to Process the Receiver Variable

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-tricky-retrieve-apis-an...

Calculating the required length of the Receiver variable to be specified as the APIs second parameter

is, however, a bit more involved—here are the words of the manual on that subject—in my formatting

for ease of reading and comprehension:

• To determine the length of the receiver variable, the following calculation should be done.

• For each system value to be returned, get the length of the data returned for the system value

and add 24.

• After adding the lengths for each system value, add 4. This calculation takes into account the

data alignment that needs to be done; therefore, this value is a worst-case estimate.

• If the calculated length is less than what is needed to return all the system value information,

then the value of the Number of system values returned field will match the actual number of

system values returned.

• The system value information for the system values that won't fit will not be returned. For

example, if a request is made to return information about 1 system value, and that information

will not fit, then the Number of system values returned field will be 0, and there will be no

information returned in the System value information table field.

Now let us continue to the next part, the actual format of the receiver variable. Here's the header

section of that:

 Offset

 Dec Hex Type Field

 0 0 BINARY(4) Number of system values returned

 4 4 ARRAY(*) of BINARY(4) Offset to system value

information table

 * * CHAR(*) System value information table.

This field

 is repeated for each system value

returned.

At the offset(s) specified by the array of four-byte integers, you find the following data structure,

which is repeated for each returned value:

 Offset

 Dec Hex Type Field

 0 0 CHAR(10) System value

 10 A CHAR(1) Type of data

 11 B CHAR(1) Information status

 12 C BINARY(4) Length of data

 16 10 CHAR(*) Data

Let's put the above specifications to work and start with the calculation of the required receiver

variable length. Even though I plan to retrieve more than one system value, for simplicity I decided

to retrieve them one at a time. This gives me the following prototype for the GetSysVal() procedure

encapsulating the QWCRSVAL API call:

Page 2 of 12APIs by Example: Tricky Retrieve APIs and How to Process the Receiver Variable

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-tricky-retrieve-apis-an...

 **-- Get system value:

 D GetSysVal Pr 4096a Varying

 D PxSysVal 10a Const

You specify a system value name, for example QSRLNBR, as input and get the retrieved value back in

the procedure's return value. The system value can have a maximum length of 4096 bytes, which

should safely cover all currently possible system values. Numeric system values are returned as

edited character strings. Below I've defined the QWCRSVAL API input parameters 1, 2, 3, and 4 the

RtnVar data structure and the three ApiPrm data structure subfields, respectively:

 D SysVal s 4096a Varying

 **

 D ApiPrm Ds Qualified

 D RtnVarLen 10i 0

 D SysValNbr 10i 0 Inz(%Elem(ApiPrm.SysVal))

 D SysVal 10a Dim(1)

 **

 D RtnVar Ds Qualified

 D RtnVarNbr 10i 0

 D RtnVarOfs 10i 0 Dim(%Elem(ApiPrm.SysVal))

 D RtnVarDta 4096a

 **

 D SysValInf Ds Qualified Based(pSysVal)

 D SysValKwd 10a

 D DtaTyp 1a

 D InfSts 1a

 D DtaLen 10i 0

 D Dta 4096a

 D DtaInt 10i 0 Overlay(Dta)

As mentioned above, I retrieve only one value at a time, but in order to be able to easily adapt my

code in case I at some point decide to retrieve more values in one call, I use the element count of the

system value array together with the size of the return variable in my calculation, which is performed

following the instructions outlined above:

 /Free

 ApiPrm.RtnVarLen = %Elem(ApiPrm.SysVal) * 24 + %Size(SysVal) +

4;

 ApiPrm.SysVal(1) = PxSysVal;

 RtvSysVal(RtnVar

 : ApiPrm.RtnVarLen

 : ApiPrm.SysValNbr

 : ApiPrm.SysVal

 : ERRC0100

);

 /End-Free

Following the API call, the RtnVar data structure defines the number of system values returned as

well as the offset from the beginning of the RtnVar data structure to each of the system value

Page 3 of 12APIs by Example: Tricky Retrieve APIs and How to Process the Receiver Variable

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-tricky-retrieve-apis-an...

information data structures returned. The system value information data structure is defined by the

above data structure SysValInf in turn based on the pSysVal pointer. So for each system value

returned, the SysValInf data structure is mapped to the address of the corresponding location in the

receiver variable:

 /Free

 For Idx = 1 to RtnVar.RtnVarNbr;

 pSysVal = %Addr(RtnVar) + RtnVar.RtnVarOfs(Idx);

 If SysValInf.SysValKwd = PxSysVal;

 Select;

 When SysValInf.DtaTyp = 'C';

 SysVal = %Subst(SysValInf.Dta: 1: SysValInf.DtaLen);

 When SysValInf.DtaTyp = 'B';

 SysVal = %Char(SysValInf.DtaInt);

 Other;

 SysVal = NULL;

 EndSl;

 EndIf;

 EndFor;

 /End-Free

Based on the data type, the actual system value is then copied to the SysVal return value variable.

This is, of course, the simple way of calling APIs like QWCRSVAL and QWCRNETA. Although this is

how I chose to use these APIs in this example, due to the fact that much of the complexity connected

to calling these APIs is related to their capacity to return multiple return values, I think it makes

sense to also demonstrate how to go about that. Let's say I want to retrieve three system values at a

time. Here's the prototype for the corresponding GetSysVal() procedure:

 **-- Get system value:

 D GetSysVal Pr 10i 0

 D PxSysValKwd 10a Const Dim(3)

 D PxSysVal 4096a Dim(3) Varying

And here's the adapted version of the GetSysVal() procedure:

 D RtnVar Ds Qualified Based(pRtnVar)

 D RtnVarNbr 10i 0

 D RtnVarOfs 10i 0 Dim(%Elem(ApiPrm.SysVal))

 D RtnVarDta 4096a

 /Free

 ApiPrm.RtnVarLen = %Elem(ApiPrm.SysVal) * 24 +

Page 4 of 12APIs by Example: Tricky Retrieve APIs and How to Process the Receiver Variable

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-tricky-retrieve-apis-an...

 %Size(PxSysVal: *All) + 4;

 pRtnVar = %Alloc(ApiPrm.RtnVarLen);

 ApiPrm.SysVal = PxSysValKwd;

 RtvSysVal(RtnVar

 : ApiPrm.RtnVarLen

 : ApiPrm.SysValNbr

 : ApiPrm.SysVal

 : ERRC0100

);

 If ERRC0100.BytAvl = *Zero;

 For Idx = 1 to RtnVar.RtnVarNbr;

 pSysVal = pRtnVar + RtnVar.RtnVarOfs(Idx);

 Select;

 When SysValInf.DtaTyp = 'C';

 SysVal = %Subst(SysValInf.Dta: 1: SysValInf.DtaLen);

 When SysValInf.DtaTyp = 'B';

 SysVal = %Char(SysValInf.DtaInt);

 Other;

 SysVal = NULL;

 EndSl;

 PxSysVal(%Lookup(SysValInf.SysValKwd

 : PxSysValKwd

)) = SysVal;

 EndFor;

 EndIf;

 DeAlloc(n) pRtnVar;

 If ERRC0100.BytAvl = *Zero;

 Return *Zero;

 Else;

 Return -1;

 EndIf;

 /End-Free

Since I'm working with a multiple of system values, I'm now allocating the calculated storage to

ensure that the receiver variable will always reflect the actual requirement. This will also make it

easier and less error prone to adapt the GetSysVal() procedure in the future, if required. Apart from

that, the process is pretty much the same as outlined for the simple version. I hope you get the

picture. Along these lines, you could take it one step further and make the GetSysVal() procedure

Page 5 of 12APIs by Example: Tricky Retrieve APIs and How to Process the Receiver Variable

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-tricky-retrieve-apis-an...

accept and process an arbitrary number of system values, but I'll leave that as an exercise for you.

Should you take up the challenge and need any kind of assistance, please let me know.

Another challenge you can be presented with comes from return data following other conventions in

terms of data type or character set than usually applying on the IBM i in general, and within RPG

development in particular. In the DSPSYSCFG CPP, I employ the Retrieve Partition Information

(dlpar_get_info) API in order to retrieve the partition name of the current partition. This piece of

information is available in format 1 of the two return formats available with the aforementioned API,

and here's how the dlpar_get_info API documentation describes the Partition name subfield of the

format 1 data structure:

Partition name is the name that has been assigned to this partition.

This

 field is a null-terminated UTF-8 character string.

Null-terminated character strings and the UTF-8 character set require special attention to process

correctly. Null termination is taken care of by the %STR (Get Null Terminated String) ILE/RPG

built-in function, which converts the null-terminated string into a regular character string containing

the value found up to but not including the null terminator. Converting the character value from

UTF-8 to your job's current Coded Character Set Identifier (CCSID) involves a bit more work.

On the i system, UTF-8 is defined by CCSID 1208. The recommended approach as far as converting

between CCSIDs on the i is concerned, is using the iconv APIs. At the end of this article, I've included

a link to an article explaining the iconv() (Code Conversion) API in great detail. If the conversion task

at hand is as limited—as in this case, in which only one character value needs to be converted—the

Convert a Graphic Character String (QTQCVRT) API provides the exact same conversion facilities as

the iconv APIs because it uses these APIs under the covers. And it is a little simpler to code, since it

requires only one API call as opposed to conversion session oriented iconv APIs' minimum of three

API calls. So for this task, I go with the QTQCVRT API.

If you want to learn more about the iconv() APIs, however, I recommend Scott Klement's article

covering the topic and to which I provide a link at the end of this article. While the QTQCVRT API

still requires some coding efforts to satisfy the 12 parameters required, for ease of use I've created a

procedure that wraps it up and only requires the three crucial input parameters and one return

value:

 **-- Convert string by CCSID:

 D CvtStrCcsId Pr 1024a Varying

 D PxCcsId 10i 0 Const

 D PxCvtStr 1024a Const

 D PxCvtStrLen 10i 0 Const

The CvtStrCcsID() procedure is designed to handle smaller strings of a size of up to 512 double-byte

characters and 1024 single-byte characters and implicitly converts from the specified CCSID to the

CCSID of the current job. Since the dlpar_get_info API returns the partition name in a null-

terminated UTF-8 string, all that remains now to convert this value into the job CCSID is to strip the

null termination from the string prior to conversion. This is handled in the CvtStrVal() procedure,

which takes the address of a null-terminated string value and converts the string from the CCSID

specified as the second parameter:

Page 6 of 12APIs by Example: Tricky Retrieve APIs and How to Process the Receiver Variable

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-tricky-retrieve-apis-an...

 **-- Convert string value:

 D CvtStrVal Pr 1024a Varying

 D PxStrVar * Value

 D PxCcsId 10i 0 Value

So to take the UTF-8 null-terminated string returned by the dlpar_get_info API and convert it to the

job CCSID now becomes the simple task of running the CvtStrVal procedure as it is done in the

GetLparName() procedure from which I've picked the following code snippet:

 /Free

 RtvPtnInf(PtnInf01: PTN_STC_INF: %Size(PtnInf01));

 Return CvtStrVal(%Addr(PtnInf01.PtnNam): 1208);

 /End-Free

As discussed many times earlier, apart from code readability, it also makes good sense to wrap up the

string and conversion functions as demonstrated above because it allows you to encapsulate the

procedures in a service program and easily reuse the code in case you for some reason want to inline

the functions.

Finally, I'm going to briefly discuss the wealth of system information and functions accessible

through the MI built-ins. To see the complete list of available MI built-ins, please follow the link at

the end of this article. In today's API by Example, I use the Materialize Machine Attributes

(MATMATR) and the Materialize Resource Management Data (MATRMD) MI built-ins. MATMATR

among many other things returns partition information, and MATRMD is capable of delivering

system processor and DB capability thresholds and limits as well as many other system resource

related data.

MI built-ins are basically MI instructions made available to the IBM i ILE compilers through a bound

program access interface and are documented in the MI instructions section of the API manual. To

find out if an MI instruction has an equivalent ILE built-in version, you look up the MI instruction in

the manual and check if there's a Bound program access box describing the built-ins interface at the

beginning of the section documenting the MI instruction in question.

As an example of how the presence of an MI built-in is verified and documented, follow the links

provided below to the MATMATR and MATRMD MI built-ins and note the section at the beginning

of the documentation. Here's what is specified for the MATMATR MI instruction:

Bound program access

 Built-in number for MATMATR1 is 92. MATMATR1 (materialization :

address

 machine_attributes : address (of just a selector value))

The MI built-in interface is further explained in the general section of the MI instruction

documentation. Note that MI built-in names are typically preceded by an underscore, below the

resulting prototype for MATMATR1:

Page 7 of 12APIs by Example: Tricky Retrieve APIs and How to Process the Receiver Variable

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-tricky-retrieve-apis-an...

 **-- Materialize machine attributes:

 D MatMatr Pr ExtProc('_MATMATR1')

 D Atr 32767a Options(*VarSize)

 D Opt 2a Const

The MATMATR MI instruction supports a large number of different return formats. You specify

which of the formats to return by specifying the appropriate selection value as the instruction's

second parameter, also referred to as operand in the MI terminology, and the adequately formatted

data structure as the first parameter. Here's the data structure and the named constant used as input

to the MATMATR1 MI built-in call, followed by the call itself:

 **-- Constants:

 D MMTR_LPAR_INFO c x'01E0'

 **-- Partition information:

 D MMTR_01E0_T Ds Qualified

 D BytPrv 10i 0 Inz(%Size(MMTR_01E0_T))

 D BytAvl 10i 0

 D CurNbrPtn 3u 0

 D CurPtnId 3u 0

 D PriPtnId 3u 0

 D SrvPtnId 3u 0

 D FmwLvl 3u 0

 D 3a

 D LglSrlNbr 10a

 D MinPctInt 5u 0 Overlay(MMTR_01E0_T: 87)

 D MaxPctInt 5u 0 Overlay(MMTR_01E0_T: 89)

 D CurPctInt 5u 0 Overlay(MMTR_01E0_T: 91)

 D NbrPhyPrc 5u 0 Overlay(MMTR_01E0_T: 93)

 D 2a Overlay(MMTR_01E0_T: 95)

 /Free

 MatMatr(MMTR_01E0_T: MMTR_LPAR_INFO);

 DtlRcd.CurNbrPtn = MMTR_01E0_T.CurNbrPtn;

 DtlRcd.FmwLvl = MMTR_01E0_T.FmwLvl;

 DtlRcd.LglSrlNbr = MMTR_01E0_T.LglSrlNbr;

 /End-Free

In addition to the API manual, it is often helpful to consult the QSYSINC library's C library MIH file's

include members to verify and troubleshoot the MI built-in interfaces. While written in C, they will

often give you an idea about the context, even if you're not that robust in the C language. Each MI

built-in has a member in the MIH file defining the structures and constants employed by that built-

in, and often also includes interesting comments and explanations relating to the use and history of

the built-in. This is also where you can verify the exact name of the MI built-in. The ILE C/C++ MI

Library Reference is a very useful resource too. I've provided a link to a PDF version of this manual

at the end of this article.

Page 8 of 12APIs by Example: Tricky Retrieve APIs and How to Process the Receiver Variable

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-tricky-retrieve-apis-an...

To sum it all up, you can see examples of the above programming techniques in the DSPSYSCFG

CPP, and I suggest you run the code in a source debugger to see how the pieces fit together. As for the

DSPSYSCFG command itself, here's what the command prompt looks like:

 Display System Configuration (DSPSYSCFG)

 Type choices, press Enter.

 Reset statistics *NO *NO, *YES

 Output * *, *PRINT

Specify whether the system status statistics and elapsed time are reset to zero prior to retrieval of the

system configuration information and also whether the command output should go to a display panel

or a printed list. Here's an example of what the command would look like if you decided to display

the system configuration information without resetting the system status statistics and elapsed time:

 DSPSYSCFG RESET(*NO)

 OUTPUT(*)

The resulting display panel's first page would have the following appearance:

 Display System Configuration

WYNDHAMW

 22-08-10

 12:25:31

 System name : WYNDHAMW

 Serial number : 4321CBA

 Type and model : 9406-525

 Processor feature : 7792

 Processor group : P10

 Partition name : 43-21CBA

 Partition ID : 1

 Logical serial number : 4321CBA1

Page 9 of 12APIs by Example: Tricky Retrieve APIs and How to Process the Receiver Variable

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-tricky-retrieve-apis-an...

 Processor share attribute . . : *DEDICATED

 Number of partitions : 1

 Firmware level : 16

 OS release : V5R4M0

 CUM package level and status . : 10117 Installed

 System state : *AVAILABLE

 TCP status : *ACTIVE

 More...

 F3=Exit F5=Refresh F12=Cancel F19=Display partition

information

 F20=Work with PTF groups F21=Display software resources

F24=More keys

In addition to the system configuration information displayed, there are shortcuts in the form of

function keys F19, F20, and F21 providing access to the Display Partition Information

(DSPPTNINF), Work with PTF Groups (WRKPTFGRP), and Display Software Resources

(DSPSFWRSC) commands, respectively. If it turns out that your system knows nothing about the

DSPPTNINF command, don't worry; it'll be part of an upcoming article in the APIs by Example

series. To see the DSPSYSCFG command's second page of configuration information, press the Page

Down button:

 Display System Configuration

 WYNDHAMW

 22-08-10

 12:25:31

 Main storage size : 15975968

 Total aux storage size : 986031

 System ASP size : 986031

 System ASP used : 84,9857

 System ASP threshold : 90,0

 Number of processors : 2

Page 10 of 12APIs by Example: Tricky Retrieve APIs and How to Process the Receiver Variable

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-tricky-retrieve-apis-an...

 Processor interactive threshold: 100,0

 Processor interactive limit . : 100,0

 CPU percent used : 22,2

 DB capability threshold . . . : 100,0

 DB capability limit : 100,0

 DB capability used : 14,8

 IPL date and time : 18-08-2010 05:11:25

 IPL type : B

 Key lock position : Normal

 Bottom

 F3=Exit F5=Refresh F12=Cancel F19=Display partition

information

 F20=Work with PTF groups F21=Display software resources

F24=More keys

The display panel and all fields shown are explained in the cursor-sensitive help text associated with

the display. Point the cursor to the area or field of interest and press F1 to access the help text

provided.

This APIs by Example includes the following sources:

CBX218 -- RPGLE -- Display System Configuration - CPP

CBX218E -- RPGLE -- Display System Configuration - UIM General Exit

CBX218H -- PNLGRP -- Display System Configuration - Help

CBX218P -- PNLGRP -- Display System Configuration - Panel Group

CBX218X -- CMD -- Display System Configuration

CBX218M -- CLP -- Display System Configuration - Build command

To create all these objects, compile and run the CBX218M program, following the instructions in the

source header. You'll also find compilation instructions in the respective source headers.

Related article:

Converting Data Between CCSIDs (June 2006, article ID 52786)

This article demonstrates the following APIs and MI Built-ins:

Retrieve System Values (QWCRSVAL) API

Page 11 of 12APIs by Example: Tricky Retrieve APIs and How to Process the Receiver Variable

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-tricky-retrieve-apis-an...

Retrieve Network Attributes (QWCRNETA) API

Retrieve System Status (QWCRSSTS) API

Retrieve Product Information (QSZRTVPR) API

List PTF Groups (QpzListPtfGroups) API

Retrieve TCP/IP Attributes (QtocRtvTCPA) API

Retrieve Partition Information (dlpar_get_info) API

Materialize Machine Attributes (MATMATR) MI Built-in

Materialize Resource Management Data (MATRMD) MI Built-in

i5/OS Machine Interface

ILE C/C++ MI Library Reference (PDF)

Convert a Graphic Character String (QTQCVRT) API

iconv() Code Conversion API

Retrieve the source code for this API example.

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-tricky-retrieve-apis-and-

how-process-receiver-variable

Page 12 of 12APIs by Example: Tricky Retrieve APIs and How to Process the Receiver Variable

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-tricky-retrieve-apis-an...

