APIs by Example: Locating and Working with Module Imports Page 1 of 6

ﬂ print | close

APls by Example: Locating and Working with Module
Imports

System iNetwork Programming Tips Newsletter

Carsten Flensburg
Carsten Flensburg
Thu, 10/23/2008 (All day)

In response to the Work with Service Program References (WRKSPGREF) command that I provided
in the September 25, 2008, installment of APIs by Example, I received a note from a reader asking
for a similar tool that finds the programs or service programs that import a given procedure. Such a
tool would be helpful if you need to alter the procedure interface in a way that would be incompatible
with the current interface or if you want to perform an impact analysis given a requirement to
remove or replace a procedure.

I welcome suggestions or ideas for new API-driven commands and utilities! When I receive a
suggestion based on actual business need, I'm inspired to try to come up with a new API example. So
I quickly envisioned a new Work with Program Import (WRKPGMIMP) command and embarked on
the initial steps involved in the design of such a utility.

However, during my initial research, I realized that no direct way exists to examine the program or
service program object and identify the procedures a module imports. However, if the module object
still exists and remains unchanged, it is possible to establish the required reference between program
and procedure.

The requirement of keeping the module around and intact potentially reduces the usefulness of the
WRKPGMIMP command. For example, programs created by using a Create Bound (CRTBNDxxx)
command, such as CRTBNDRPG, will do their the binding against a temporary module object in
QTEMP, and therefore there's no module object when you want to run WRKPGMIMP. So I added an
option to the WRKPGMIMP command to help you locate all programs and service programs that
contain modules that no longer exist or modules that are out of date (i.e., the source has been
changed since the module was created). To take advantage of this option, you must specify the
special value *VFYMODREF for the WRKPGMIMP command's IMPORT parameter.

But let me start out with a brief discussion of the module anatomy of ILE programs and service
programs. Both program types can be created from one or more modules all together making up the
final program object. For programs, one module will provide the program entry module, and this is
the one specified on the Create Program (CRTPGM) command's Entry module (ENTMOD)
parameter. This parameter by default points to the *FIRST module specified for the command's
module list (MODULE) parameter. For service programs, no single entry point exists, as each
exported subprocedure effectively constitutes an individual entry point.

To see the name of the entry module for a program object named CBXoo01 in library QGPL, run the
command:

DSPPGM PGM (QGPL/CBX001) DETAIL (*BASIC)

http://iprodeveloper.com/print/application-development/apis-example-locating-and-w... 04-04-2014

APIs by Example: Locating and Working with Module Imports Page 2 of 6

To see all subprocedures and data items exported from a service program named CBX101 in library
QGPL, run the command:

DSPSRVPGM SRVPGM (QGPL/CBX101) DETAIL (*PROCEXP)

A detailed discussion of how to control a service program's exports through binder language was
provided in the previous APIs by Example. I've provided a link to that article at the end of this article.

Just as service programs can make exported procedures available to other programs or service
programs, so can a module. All subprocedures in a module specifying the procedure interface
keyword EXPORT can be resolved by the binding process when a program or service program is
created and the module in question is specified on the create command's MODULE parameter. To
see what procedures and data items are exported from a module named CBXoo01 in library QGPL,
run the command:

DSPMOD MODULE (QGPL/CBX001) DETAIL (*EXPORT)

Likewise, all modules also have the option of importing subprocedures or data items that are
employed by the module. When the module is created, all subprocedures or data items not resolved
from the module itself are listed as part of the module's imported unresolved symbols array. These
imports must be resolved at the point at which the modules are bound into a program or service
program, unless OPTION(*UNRSLVREF) is specified on the Create Program command. To see what
unresolved import symbols are defined for a module object named CBXo001 in library QGPL, run the
command:

DSPMOD MODULE (QGPL/CBX001) DETAIL (*IMPORT)

The program binding process examines all modules' unresolved imports and attempts to resolve
these by checking all modules and service programs submitted by the program creation command
and specified explicitly by qualified name or implicitly through binding directories. As for the latter,
some system binding directories are automatically present through the compiler, whereas other
binding directories can be specified on the Create Program command or in the header specifications
(H-spec) in the individual modules. To see what binding modules apply to a module named CBXoo01
in library QGPL, run the command:

DSPMOD MODULE (QGPL/CBX001) DETAIL (*REFSYSOBJ)

You'll see a list of binding directories, either included by the compiler or defined in the module's
H-specification. Finally, and this is as close as we get to imported procedures by means of the
program object, the program object will define all service program references resolved during the
program binding process. All resolved imports will be found in either the program's module listing or
the program's service program listing. To see what modules are bound into a program object named
CBXoo01 in library QGPL, run the command:

DSPPGM PGM (QGPL/CBX001) DETAIL (*MODULE)

And to see what service programs are referenced, in terms of imports resolved from each listed
service program, for the same program, run the command:

DSPPGM PGM (QGPL/CBX001) DETAIL (*SRVPGM)

However, although this command tells you which modules and service programs a given program
uses, it does not tell you which procedures are called in those service programs or modules. For

http://iprodeveloper.com/print/application-development/apis-example-locating-and-w... 04-04-2014

APIs by Example: Locating and Working with Module Imports Page 3 of 6

example, if I find myself in a situation in which I need to uncover which programs or service
programs import a specific subprocedure, I will be able to do so only by using the original module
object as a bridge between the programs and the procedure. In other words; I will need to employ a
number of APIs to perform the following lookup process:

1. Call the Open List of Objects API (QGYOLOBJ) to list all programs and service programs
identified by the WRKPGMIMP command's REFPGM parameter.

2. For each program and service program found, list all modules bound into the program or
service program by using the List ILE Program Information (QBNLPGMI) API and the List
Service Program Information (QBNLSPGM) API, respectively.

3. For each bound module, perform the following verification and investigation process:

a. Check the module object existence using the Retrieve Object
Description (QUSROBJD) API.
b. If a) is passed, verify the module source level against the

corresponding data recorded

into the program object by using the Retrieve Module
Information (QBNRMODI) API.
c. If b) is passed, retrieve and process the module import
symbol list by using the List

Module Information (QBNLMODI) API and match each import
symbol name and type against

the symbol name and type specified as the WRKPGMIMP command's
IMPORT parameter.

4. If ¢) produces a match, program and module information is included in the WRKPGMIMP
command's work-with list.

Note, that if the aforementioned value *VFYMODREEF is specified for the WRKPGMIMP command's
IMPORT parameter, only modules failing either test a) or b) are included in the work-with list.
Here's the WRKPGMIMP command's prompt panel:

Work with Program Import (WRKPGMIMP)

Type choices, press Enter.

Imported symbol name

Import symbol type *PROC *PROC, *DATAITEM

Import program Name, generic*,
*ALL

Library *LIBL Name, *LIBL,
*CURLIB...

Import program type *ANY *ANY, *PGM,
*SRVPGM

http://iprodeveloper.com/print/application-development/apis-example-locating-and-w...

04-04-2014

APIs by Example: Locating and Working with Module Imports Page 4 of 6

Sort order *OBJLIB *OBJLIB, *TYPORJ,
*LIBORBRJ...
Output * *, *PRINT

You specify the name of the procedure or data item to which you want to want to find all program
references as the primary parameter and the symbol type as the secondary. Please note that the
symbol name is case sensitive, as are import symbol names. Next, you enter the generic name and
library qualification of the relevant selection of programs and service programs whose modules you
want to list and check for unresolved imports. Using the special name value *ALL and one of the
special values available for library qualification, you can potentially list and examine a lot of
programs and service programs. This could of course lead to an extensive use of system resources so,
if possible, narrow the selection range as much as feasible.

You can also specify only one program type to be included in the array of programs to examine as
well as specify a variety of sort orders for the produced list. Finally, you can choose to print the
program list instead of displaying a work-with panel. The available online help text offers more detail
about the command and its parameters. When I run the following command on my system:

WRKPGMIMP IMPORT (GETSYSVAL)
SYMTYP (*PROC)
IMPPGM (QGPL/CBX*)
IMPPGMTYP (*ANY)
ORDER (*OBJLIB)
OUTPUT (*)

I'm presented with the following work-with panel:

Work with Program Import
WYNDHAMW
18-10-08
15:31:15
Import symbol : GETSYSVAL
Symbol type : *PROC
Type options, press Enter.
2=Update 4=Delete program 5=Display program 6=Display
module
7=Work with PDM 8=Program reference 9=Module reference
Program Module Module
Opt Name Library Type Name Library
Status

http://iprodeveloper.com/print/application-development/apis-example-locating-and-w... 04-04-2014

APIs by Example: Locating and Working with Module Imports

CBX101
*IMPSYMEND
CBX102
*IMPSYMFND
CBX103
*IMPSYMEND
CBX110
*IMPSYMEND
CBX123
*IMPSYMFND
CBX125
*IMPSYMEND
CBX130
*IMPSYMFND

More. ..
Parameters

===>

F3=Exit
program text

Fl2=Cancel
symbol

QOGPL

QGPL

QOGPL

QGPL

QOGPL

QGPL

QOGPL

or command

F4=Prompt

F17=Top

*PGM

*PGM

*PGM

*PGM

*PGM

*PGM

*PGM

F5=Refresh

F18=Bottom

CBX101

CBX101

CBX101

CBX110

CBX123

CBX125

CBX130

F9=Retrieve

F22=Display entire import

QOGPL

QGPL

QOGPL

QGPL

QGPL

QGPL

QGPL

Fl1=Display

Page 5 of 6

Using the function key F11, you can toggle between different types of program and module

information. A number of list options are included to execute various commands against the found
programs and service programs. The list of available commands includes UPDPGM/UPDSRVPGM,
DLTPGM/DLTSRVPGM, DSPPGM/DSPSRVPGM, DSPMOD, WRKMBRPDM, and DSPPGMREF.
Again, you have online help text available to explain the list panel, columns, options, and function

keys.

This APIs by Example includes the following sources:

CBX197 -- RPGLE -- Work
CBX197E -- RPGLE -- Work
CBX197H -- PNLGRP -- Work

CBX197P -- PNLGRP -- Work
CBX197V -- RPGLE -- Work
CBX197X —-- CMD -—- Work

CBX197M -- CLP -—- Work

with Program
with Program
with Program
with Program
with Program
with Program

with Program

Import - CPP

Import - UIM Exit

Import - Help

Import - Panel Group

Import - VCP
Import

Import - Build Command

To create all these objects, compile and run CBX197M, following the instructions in the source
header. As always, you'll also find compilation instructions in the respective source headers.

Previously published related APIs by Example article:

APIs by Example: Identifying and Working with Service Program References
http://systeminetwork.com/article/apis-example-identi

ing-and-working-service-

references

http://iprodeveloper.com/print/application-development/apis-example-locating-and-w...

04-04-2014

APIs by Example: Locating and Working with Module Imports Page 6 of 6

IBM documentation:

System i ILE Concepts V6R1:
http://publib.boulder.ibm.com/infocenter/systems/topic/books/sc415606.pdf

Redbook: Moving to Integrated Language Environment for RPG IV:
http://www.redbooks.ibm.com/redbooks/pdfs/gg244358.pdf

This article demonstrates the following Program and CL Command APIs:

Retrieve Module Information (QBNRMODI) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/apis/gbnrmodi.htm

List Module Information (QBNLMODI) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/apis/gbnlmodi.htm

Retrieve Program Information (QCLRPGMI) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/apis/gclrpgmi.htm

List ILE Program Information (QBNLPGMI) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/apis/gbnlpgmi.htm

List Service Program Information (QBNLSPGM) API:
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/gbnlspgm.htm

You can retrieve the source code for this API example from:

http://www.pentontech.com/IBMContent/Documents/article/57348 710 WrkPgmImp.zip

Source URL: http://iprodeveloper.com/application-development/apis-example-locating-and-
working-module-imports

http://iprodeveloper.com/print/application-development/apis-example-locating-and-w... 04-04-2014

