APIs by Example: Cryptographic Services APIs, Part 4 Page 1 of 4

ﬂ print | close

APIs by Example: Cryptographic Services APIs, Part 4

System iNetwork Programming Tips Newsletter

Carsten Flensburg

Carsten Flensburg
Thu, 01/12/2006 (All day)

In part 3 of this article series, I delivered the Create Master Key (CRTMSTK) and Remove Master
Key (RMVMSTK) commands. This time, I add the Create Key Encrypting Key (CRTKEK) and
Remove Key Encrypting Key (RMVKEK) commands to the set of key administration tools that I
intend to offer as part of my exploration of the Cryptographic Services APIs.

As explained last time, the CRTMSTK command simply adds the specified master key to the key
store as it is, whereas the CRTKEK command needs to encrypt the specified key encrypting key
under the master key before storing it. It is here that one of the new improvements to the
Cryptographic Services APIs comes into play: key context tokens.

Instead of retrieving the master key and passing that on in clear text to the encryption process, a key
context token is returned from the function responsible for retrieving the master key. A key context
token identifies the actual key value to the encryption and decryption APIs, and this information is
stored below the MI and therefore accessible only to system functions. Passing the token instead of
the key itself between functions that require the master key reduces the risk of exposure and thereby
the risk of the master key being compromised.

A key context token is valid only in the job that created it, and it cannot be passed from one job to
another. Likewise, an algorithm context token can be created to point to the algorithm parameters
used in the encryption and decryption process, such as cipher algorithm, block length, mode, pad
option, and so on. I use algorithm context tokens in this example because they centralize and thereby
simplify the control of the algorithm parameters in the cryptographic processes.

The CRTKEK command performs the following steps:

1. An algorithm context token is created.

2. A master key context token is created.

3. If the special value *GEN was specified for the key value, the Generate Symmetric Key
(QC3GENSK, Qc3GenSymmetricKey) API is called, passing the master key context token to let
the API return the new key already encrypted under the master key.

4. If a key value was specified, the Encrypt Data (QC3ENCDT, Qc3EncryptData) API is called,
passing the key value and master key context token.

5. The encrypted key-encrypting key (KEK) resulting from step 3 or 4 is stored in the key store
validation list.

6. The context tokens are destroyed.

Here's what the prompt of the Create Key Encrypting Key command looks like:

http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-service... 03-04-2014

APIs by Example: Cryptographic Services APIs, Part 4 Page 2 of 4

Create Key Encrypting Key (CRTKEK)
Type choices, press Enter.

Key label c e e e e

Key length 16 le6, 24, 32
Key bytes 1-8 *GEN

Key bytes 9-16 *GEN

The key label parameter is the name or identifier of the KEK. The specified KEK label is used to
identify by which KEK a data encryption key is encrypted, later in the key management process.

I provide a help panel group for both the CRTKEK and RMVKEK commands, to explain all the
command parameters in detail.

In the next installment of this series, I will complete the command set necessary to create or remove
a master key, KEKs, and data encryption keys and present the Create Data Key (CRTDTAK) and
Remove Data Key (RMVDTAK) commands. In a later installment, I will also offer tools to change a
master key or KEK and at the same time re-encrypt any of its sub-keys under the new key.

Note that for simplicity I store all encryption keys in the same key store, but if necessary, I could use
different key stores to further isolate the access to the different keys and key types. As for the
protection issue in a broader perspective, I must emphasize that encryption of the cipher keys is only
one among more protection mechanisms, which, when added together, should provide an assessed
and acceptable level of risk, as far as unauthorized access to the cipher keys, as well as the data they
are protecting, is concerned.

Other aspects of data protection and key management include such things as object authority, audit
journal and control, program design, and risk management in general, as well as developing and
enforcing a company security policy. You must take into account all these different aspects
individually for each application, depending on the specific requirements and risk exposures of that
application.

This key management sample application is mainly intended as an introduction to the Cryptographic
Services APIs and as a starting point for anyone faced with the need to develop cryptographic
applications. And as I mentioned, careful research and design efforts are mandatory to ensure that
any cryptographic application that you put into production is in accordance with the specific
requirements and development guidelines of your shop.

Encryption and decryption in this key management sample application are performed using the
Cryptographic Services APIs implementation of the Advanced Encryption Standard (AES) block
cipher algorithm and a block size of 16 bytes.

The following cryptographic and key management functions are available with this article and the
previous articles in this series:

GenAesKey () —-- Generate AES cipher key

GenInzVct () —-- Generate initialization wvector
GetAlgCtx () —-- Get algorithm context

GetMgtAlg () -- Get key management algorithm context
GetKeyCtx () —-- Get key context

RmvAlgCtx () -- Remove algorithm context

RmvKeyCtx () —-- Remove key context

EncDtaStr () -- Encrypt data string using context tokens

http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-service... 03-04-2014

APIs by Example: Cryptographic Services APIs, Part 4

DecCphStr () -- Decrypt cipher string using context tokens

AddKeyEnt () -- Add key entry to key store
ChgKeyEnt () —-— Change key store entry
()

ChkSubKey -— Check sub key existence
FndNxtKeyE () -- Find next key entry
FndTopKeyE () -- Find top key entry

GetKeyAtr () -- Get key attribute

GetKeySto () -- Get key store

GetMstKeylb () -- Get master key label
RmvKeyEnt () -- Remove key store entry
ViyKeyEnt () -- Verify key store entry
GetFcnUsg () -- Get function usage
GetMstKeyTk () —-- Get master key context token

Page 3 of 4

I will continue the coverage of the V5R3 Cryptographic Services APIs in the coming APIs by Example

columns and in the course of that process add to the preceding list of cryptographic and key

management functions.

You can find part one of this article here:
http://www2.systeminetwork.com/article.cfm?id=51236

You can find part two of this article here:
http://www2.systeminetwork.com/article.cfm?id=51786

You can find part three of this article here:
http://www2.systeminetwork.com/article.cfm?id=51863

This APIs by Example includes the following sources:

CBX146 -- Cryptographic services service program

CBX146B -- Service program binder source

CBX147 -- Cryptographic key management service program
CBX147B -- Service program binder source

CBX1471 -- Create Master Key - command processing program
CBX1472 -- Remove Master Key - command processing program

The preceding sources are all revised versions of previously published sources, which I've updated to
support requirements introduced with this article. Please replace these sources in your utility
library's source files with these updated versions. The CBX148M program ensures that the program

objects get correctly recompiled.

The following new sources deliver the CRTKEK and RMVKEK commands:

CBX1481 -- Create Key Encrypting Key - command processing program
CBX1481H -- Create Key Encrypting Key - help

CBX1481V -- Create Key Encrypting Key - validity checker

CBX1481X -- Create Key Encrypting key - command

CBX1482 -- Remove Key Encrypting Key - command processing program
CBX1482H -- Remove Key Encrypting Key - help

http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-service...

03-04-2014

APIs by Example: Cryptographic Services APIs, Part 4 Page 4 of 4

CBX1482V -- Remove Key Encrypting Key - validity checker
CBX1482X -- Remove Key Encrypting Key - command

I also include a program that performs all necessary command object creation:
CBX148M -- Command objects creation

Compilation instructions are also in the source headers, as usual.

This article demonstrates the following APIs:

Add Validation List Entry (QsyAddValidationLstEntry) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr3/topic/apis/gsyavle.htm

Change Validation List Entry (QsyChangeValidationLstEntry) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr3/topic/apis/QSYCVLE.htm

Find First Validation List Entry (QsyFindFirstValidationLstEntry) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr3/topic/apis/QSYFFVLE.htm

Find Next Validation List Entry (QsyFindNextValidationLstEntry) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr3/topic/apis/QSYFNVLE.htm

Find Validation List Entry (QsyFindValidationLstEntry) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr3/topic/apis/QSYFIVLE.htm

Remove Validation List Entry (QsyRemoveValidationLstEntry) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr3/topic/apis/QSYRVLE.htm

Send Program Message (QMHSNDPM) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr3/topic/apis/QMHSNDPM.htm

Move Program Messages (QMHMOVPM) API:
http://publib.boulder.ibm.com/infocenter/iseries /vsr3/topic/apis/gmhmovpm.htm

Resend Escape Message (QMHRSNEM) API:
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/QMHRSNEM.htm

You can retrieve the source code for this API example from the following link:
http://www.pentontech.com/IBMContent/Documents/article/51962 50 CryptoServices4.zip

-programming/apis-example-cryptographic-services-

Source URL: http://iprodeveloper.com/r

apis-part-4

http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-service... 03-04-2014

