4/6/2014 Work Management APIs: Keeping an Eye on Job Activity

B print | close

Work Management APIs: Keeping an Eye on Job Activity

Carsten Flensburg
Wed, 12/18/2013 - 11:15am

Monitor, manage, and interact with subsystems, job queues, and jobs

One thing that fascinates me about APIsis the waysin which they let us create and tailor the
tools we need in our daily work to best meet our specific requirements. IBM hasinvested a
significant amount of work and effort into providing GUI work management tools such as
Navigator for i. These contemporary offerings include many facilities and a lot of information
not available in older, native commands.

So at times, I'm confronted with requests for enhancements of and alternatives to CL commands from people
who, in their daily jobs, lack access tothe GUItools, or they want a shortcut tothat functionality without
having tostart Navigator. That’s when Iturn tothe Work Management and User Interface Management (UIM)
APIs, which I'll demonstrate in this article.

A Collection of Past CL Commands

In the past, I've written and published many work management CL commands, soin this article I'll present a
collection of these utilities. All of the commands have been updated and enhanced toreflect additions made and
changesintroduced after their initial release. I've alsoincluded a new command not previously published.

The objective of collecting the CL commands in question is twofold. The main purpose is to establish a tool that
lets you easily monitor and manage the job streams as jobs are executing in all the subsystems configured on
your system. The other purpose is to provide two levels of access to the overview. The first is an interface where
you can monitor and interact with the subsystems, job queues, and jobs listed. An alternate interface, which
only lets you display the various configuration entities, targets a wider audience that can monitor the sy stem
workload as it progresses without compromising operational security and integrity.

For the management-capable version, I provide in a single panel a list of all active subsystems, each specifying a
total of currently active jobs and a total of jobs that are currently waiting in the subsystem’s attached job
queues. If a particular situation in one subsystem catchesyour eye, the list panel lets y ou select that subsy stem
and list all its job queues, again displaying the total jobs currently active from a specific job queue and the total
jobs waiting on the queue. The job queue list in turn provides access to a panel that shows all active jobs
submitted through the job queue and the jobs waiting on the job queue. The jobs are listed in the order dictated
by each job’s status and job priority, letting you monitor and predict the job flow in a single view.

I'venamed the three commands Work with Subsystem Activity (WRKSBSACT), Work with Subsystem Job
Queues (WRKSBSJOBQ), and Work with Job Queue Jobs (WRKJOBQJOB). The corresponding display only-
capable commands are Display Subsystem Activity (DSPSBSACT), Display Subsystem Job Queues
(DSPSBSJOBQ), and Display Job Queue Jobs (DSPJOBQJOB). The Additional Message Information panel
discussed in “Work Management APIs—Putting the Pieces Together” is accessible from both versions. The display
version provides access tothe Display Job Status (DSPJOBSTS) command and the Display User Jobs
(DSPUSRJOB) command, which I've also written, although the former command was previously unpublished.

Retrieving Job Information

Producing a list and status of all or some of the subsystems configured on an IBM i is easy. You obtain the former
by using the Open List of Objects (QGYOLOBJ) APIand the latter by using the Retrieve Subsystem Information
(QWDRSBSD) APL Likewise, the Open List of Job Queues (QSPOLJBQ) API and the Retrieve Job Queue
Information (QSPRJOBQ) APIcan retrieve the job queue information required tobuild a list of job queues
associated with a subsystem as well as retrieve each job queue’s operational status. The heart of the matter very
much relies on the Open List of Jobs (QGYOLJOB) APIL As Figure 1 shows, the QGYOLJOB API supports a
parameter list of 17 parameters, four of which are optional.

http://iprodevel oper.com/print/application-development/wor k-manag ement-apis-keeping -eye-job-activity 1/6

4/6/2014 Work Management APIs: Keeping an Eye on Job Activity

Figure 1: Open List of Jobs (QGYOLJOB) API

Required Parameter Group:

1 Receiver variable Output Char (*)

2 Length of receiver variable Input Binary (4)

3 Format name Input Char (8)

4 Receiver variable definition information Output Char (*)

5 Length of receiver variable information Input Binary (4)

6 List Information Output Char (80)

7 Number of records to return Input Binary (4)

8 Sort information Input Char (*)

9 Job selection information Input Char (*)
10 Size of job selection information Input Binary (4)
11 Number of fields to return Input Binary (4)
12 Key of fields to be returned Input Array (*) of Binary(4)
13 Error Code I/0 Char (*)

Optional Parameter Group 1:
14 Job selection format name Input Char (8)

Optional Parameter Group 2:

15 Reset status statistics Input Char (1)
16 General return data Output Char (*)
17 Length of general return data Input Binary (4)

Default Public Authority: *USE

The QGYOLJOB API parameter list is explained in detail in the article “APIs at Work—with Jobs.” The
parameter of particular interest for retrieving jobs submitted through a specific job queue is the Job selection
information. This parameter supports a basic and an enhanced format of selection criteria—named OLJS0100
and OLJS0200, respectively —that lets you narrow the list of jobs returned by the APL You can see the basic
list’s offering in Figure 2.

Figure 2: OLJS0100 basic list's offering

Primary job status ARRAY (*) of CHAR(10)
Active job status ARRAY (*) of CHAR (4)
Jobs on job queue status ARRAY (*) of CHAR(10)
Job queue names ARRAY (*) of CHAR(20)

The enhanced list includes the criteria in Figure 2 and the additional criteria shown in Figure 3.

Figure 3: OLJS0200 enhanced list's offering

Current user profile ARRAY (*) of CHAR(10)
Server type ARRAY (*) of CHAR(30)
Active subsystem ARRAY (*) of CHAR(10)
Memory pool ARRAY (*) of BINARY (4)
Job type - enhanced ARRAY (*) of BINARY (4)
Qualified job name ARRAY (*) of CHAR(26)

Asindicated by the array keyword, you can specify multiple values for each criterion. Consequently, the
OLJSo100 and OLJSo200 formats for each criterion contain the offset from the beginning of the structure to
thelocation of the criteria as well asinclude the count of values provided. This can make the definition of the
data structure a bit challenging at first, but after you dothe math a couple of times, it all adds up. Here’s an
example: according tothe APIdocumentation, the OLJS0200 structure’s fixed format includes the 6 0-byte fixed
format from the OLJSo100 format plus 12 4-byte integers holding array offsets and value counts—all in 108
bytes. Because I place the job selection value arrays immediately after the value offset and count section, Iuse
thisvalue as the starting position of the first selection criterion array, and then Iadd the sum of the preceding
criterion arrays’ sizes to calculate the offset of subsequent selection criterion arrays. Figure 4 shows an example
of the OLJS0200 job selection data structure.

Figure 4: OLJS0200 job selection data structure example

http://iprodevel oper.com/print/application-development/wor k-manag ement-apis-keeping -eye-job-activity

2/6

4/6/2014 Work Management APIs: Keeping an Eye on Job Activity

**-— Selection information:

D OLJS0200 Ds Qualified
D JobNam 10a Inz ("*ALL')
D UsrPrf 10a Inz ('"*ALL')
D JobNbr oca Inz ('"*ALL')
D JobTyp la Inz('"*')
D la

D OfsPriSts 101 0 Inz(108)
D NbrPriSts 101 0 Inz(2)
D OfsActSts 101 0 Inz(128)
D NbrActSts 101 0 Inz(0)
D 0fsJbgSts 101 0 Inz(136)
D NbrJbgSts 101 0 Inz(0)
D OfsJbgNam 101 0 Inz(146)
D NbrJbgNam 101 0 Inz(1)
D OfsCurUsr 101 0 Inz(166)
D NbrCurUsr 101 0 Inz(0)
D OfsSvrTyp 101 0 Inz(176)
D NbrSvrTyp 101 0 Inz(0)
D OfsActSbs 101 0 Inz(206)
D NbrActSbs 101 0 Inz(0)
D OfsMemPool 101 0 Inz(216)
D NbrMemPool 101 0 Inz(0)
D OfsJobTypE 101 0 Inz(220)
D NbrJobTypE 101 0 Inz(0)
D OfsJobNamQ 101 0 Inz(228)
D NbrJobNamQ 101 0 Inz(0)
*

D PriSts 10a Dim(2)
D ActSts 4a Dim(2)
D JbgSts 10a Dim(1)
D JbgNam 20a Dim(1)
D CurUsr 10a Dim(1)
D Svrlyp 30a Dim(1)
D ActSbs 10a Dim(1)
D MemPool 101 0 Dim(1)
D JobTypE 104 0 Dim(1)
D JobNamQ 26a Dim(1)

Tofind each criterion array’s size, multiply the number of array elements defined for the criterion in the job
selection data structure by the length of a single element. For example, if you define two elements for the
primary job status criterion located at offset 108, the next criterion will begin at offset 128. Ialways define a
minimum of one element for each criterion. If Idon’t want to use a criterion, I simply specify a count of zero for
that criterion. If Ineed to specify more values than were previously defined, I add the size of the added elements
toall subsequent offsets. I've found that this approach makes it quite easy towork with this somewhat com plex
parameter because to some extent it documents the correlation between the various elements of the data
structure defining it.

The job selection parameter also plays an important role regarding the constraints that apply tothe QGYOLJOB
APL If you specify one or more values for a job selection criterion, you must request the corresponding job
attribute in the array of fields toreturn, defined by the API's 12th parameter. Basically, this meansthat for the
QGYOLJOB API to select jobs based on a specific job attribute, you must request the APItoinclude that attribute
with the job information returned. Based on my experience, thisis one of the most common causes for a
QGYOLJOB API call to fail, and the requirement isn’t explicitly documented in the APImanual, although the
resulting error message typically will identify the culprit.

API Programming Results

As for the final outcome of all the APIprogramming efforts, Figures 5A—E and Figures 6 A—E show the command
prompts and list panels, respectively, for some of the commands accompanying this article. To obtain the list
options pointing to the Work with Jobs (WRKJOBS) command and the Additional Message Information panel
presented in “Work Management APIs: Putting the Pieces Together,” you’ll want to download and compile the
sources included in that article. In addition, the “How to Compile” section (included with the online version of
this article) provides instructions for creating the Work with Jobs (WRKJOBS) command and all its associated
commands and objects.

Find Out More

http://iprodevel oper.com/print/application-development/wor k-manag ement-apis-keeping -eye-job-activity 3/6

4/6/2014 Work Management APIs: Keeping an Eye on Job Activity

Articles at iProDeveloper.com

“APIs at Work—with Jobs”

“APIs by Example: Message Handling APIs & Additional Message Info Support”

“APIs by Example: UIM & Work Management APIs, Part 1”

“APIs by Example: UIM & Work Management APIs, Part 2”

“APIs by Example: UIM & Work Management APIs, Part 3”

“Display Active and Waiting Jobs and Corresponding Job Queues”

“Displayving User Jobs—But No Changes Allowed with Command DSPUSRJOB”

“New Command: Display Subsystem Activity —DSPSBSACT”

“New Command to Display Job Queues by Subsystem”

“Work Management APIs: Putting the Pieces Together”

“Carsten's Corner—New Subsystem Entry Commands—Part one”

“Carsten's Corner—New Subsystem Entry Commands—Part Two”

“Carsten's Corner—New Subsystem Entry Commands—Part 3”

“Carsten's Corner—New Subsystem Entry Commands—Part 4”

IBMi 7.1 Information Center documentation

Open List of Jobs (QGYOLJOB) API

Open List of Job Queues (QSPOLJBQ) API

Open List of Objects (QGYOLOBJ) API

Register Activation Group Exit Procedure (CEE4RAGE) API

Retrieve Job Queue Information (QSPRJOBQ) API

Retrieve Subsystem Information (QWDRSBSD) API

How to Compile

Below, you’ll find instructions for creating the Work with Jobs (WRKJOBS) command and all its associated
commands and objects. The following sources are included with the code download available with this article:

CBX156—RPGLE: Work with Subsystem Activity —CCP

CBX156 E—RPGLE: Work with Subsystem Activity —UIM Exit Program
CBX156 H—PNLGRP: Work with Subsystem Activity —Help

CBX156 M—CLP: Work with Subsystem Activity — Build command
CBX156 P—PNLGRP: Work with Subsystem Activity —Panel Group
CBX156V—RPGLE: Work with Subsystem Activity —VCP
CBX156X—CMD: Work with Subsystem Activity

CBX157—RPGLE: Work with Subsystem Job Queues—CCP
CBX157E—RPGLE: Work with Subsystem Job Queues—UIM Exit Program

http://iprodevel oper.com/print/application-development/wor k-manag ement-apis-keeping -eye-job-activity 4/6

4/6/2014 Work Management APIs: Keeping an Eye on Job Activity
CBX157 H—PNLGRP: Work with Subsy stem Job Queues—Help

CBX157M—CLP: Work with Subsystem Job Queues—Build command
CBX157P—PNLGRP: Work with Subsystem Job Queues—Panel Group
CBX157V—RPGLE: Work with Subsystem Job Queues—VCP
CBX157X—CMD: Work with Subsy stem Job Queues
CBX158—RPGLE: Work with Job Queue Jobs—CCP

CBX158 E—RPGLE: Work with Job Queue Jobs—UIM Exit Program
CBX158 H—PNLGRP: Work with Job Queue Jobs—Help
CBX158M—CLP: Work with Job Queue Jobs—Build command
CBX158 P—PNLGRP: Work with Job Queue Jobs—Panel Group
CBX158V—RPGLE: Work with Job Queue Jobs—VCP
CBX158X—CMD: Work with Job Queue Jobs

CBX965—RPGLE: Display User Jobs—CCP

CBX965E—RPGLE: Display User Jobs—UIM General Exit Program
CBX965H—PNLGRP: Display User Jobs—Help

CBX965L—RPGLE: Display User Jobs—UIM List Exit Program
CBX965M—CLP: Display User Jobs—Build command
CBX965P—PNLGRP: Display User Jobs—Panel Group
CBX965V—RPGLE: Display User Jobs—VCP

CBX965X—CMD: Display User Jobs

CBX966—RPGLE: Display Subsystem Activity —CCP

CBX966 E—RPGLE: Display Subsystem Activity —UIM Exit Program
CBX966 H—PNLGRP: Display Subsystem Activity —Help

CBX966 M—CLP: Display Subsystem Activity —Build command
CBX966P—PNLGRP: Display Subsystem Activity —Panel Group
CBX966V—RPGLE: Display Subsystem Activity—VCP
CBX966X—CMD: Display Subsystem Activity

CBX967—RPGLE: Display Subsystem Job Queues—CCP
CBX967E—RPGLE: Display Subsystem Job Queues—UIM Exit Program
CBX967H—PNLGRP: Display Subsystem Job Queues—Help
CBX967M—CLP: Display Subsystem Job Queues—Build command
CBX967P—PNLGRP: Display Subsystem Job Queues—Panel Group

CBX967V—RPGLE: Display Subsystem Job Queues—VCP

http://iprodevel oper.com/print/application-development/wor k-manag ement-apis-keeping -eye-job-activity 5/6

4/6/2014 Work Management APIs: Keeping an Eye on Job Activity
CBX967X—CMD: Display Subsystem Job Queues

CBX968—RPGLE: Display Job Queue Jobs—CCP
CBX968E—RPGLE: Display Job Queue Jobs—UIM Exit Program
CBX968H—PNLGRP: Display Job Queue Jobs—Help
CBX968M—CLP: Display Job Queue Jobs—Build command
CBX968P—PNLGRP: Display Job Queue Jobs—Panel Group
CBX968V—RPGLE: Display Job Queue Jobs—VCP
CBX968X—CMD: Display Job Queue Jobs

CBX265—RPGLE: Display Job Status—CCP

CBX265E—RPGLE: Display Job Status—UIM General Exit Program
CBX265H—PNLGRP: Display Job Status—Help
CBX265L—RPGLE: Display Job Status—UIM List Exit Program
CBX265P—PNLGRP: Display Job Status—Panel Group
CBX265V—RPGLE: Display Job Status—VCP

CBX265X—CMD: Display Job Status

CBX265M—CLP: Display Job Status—Build command
CBX265M—CLP: Work with Jobs—Build commands

To create the above commands and associated objects, compile and run the CBX265M CL program as well as all
the other CL programs included in the list, following the instructions in the source header. You’ll also find
compilation instructionsin the respective source headers of the individual sources.

Source URL: http://iprodev eloper.com /application-dev elopment/work-management-apis-keeping-ey e-job-
activity

http://iprodevel oper.com/print/application-development/wor k-manag ement-apis-keeping -eye-job-activity 6/6

