APIs by Example: Data Queue APIs and CL Commands, Part 5 Page 1 of 8

n print | close

APls by Example: Data Queue APIs and CL Commands, Part 5

System iNetwork Programming Tips Newsletter
Carsten Flensburg

Carsten Flensburg

Thu, 02/22/2007 (All day)

This is the final installment of the articles about the data queue APIs and CL commands. Today, I demonstrate
how to use data queues to establish a communication layer between two programs, and I discuss some of the
problems and considerations involved.

This example uses local data queues, but the information about data queue setup, the programming of the
transaction dialog, and the data queue API calls applies irrespective of where the physical data queues are
located. From the communicating programs' view, it's merely a question of addressing the interface that the data
queue APIs provide.

Using DDM data queues, the programs communicating through data queues can reside on different servers if
required. They can even be on different platforms. For example, both Visual Basic and Java offer programmable
interfaces to data queues. If that topic is of interest to you, follow the links at the end of this article for more
information about DDM data queues as well as VB and Java data queue support.

As I mentioned in part one of this article series, data queues offer a solution to different types of design and
architecture objectives. For example, it could be a need to process a workload from a web application located on
a separate server accessible from the Internet, while the production data and business logic are on a back-end
server behind the company firewall. Or the situation could involve a CPU-intensive application that should have
its system workload moved from expensive interactive CPU cycles to less expensive batch cycles. The latter issue
is potentially not only a question of cost, but also of sufficient system CPU capacity and thereby application
scalability.

To build a robust and flexible data queue communication layer, the following data protocol and application
design aspects are worth considering in the early phase of your development project:

Message Format: What kind of formatting should be applied to the message? For internal applications,
mapped data structures might suffice, but if the data exchange involves external partners or programming
languages with poor data structure facilities, XML is definitely worth considering.

If you stick with data structures, your design should allow for varying-length subfields, to avoid space constraint
problems. To achieve this objective, keep a fixed-length part of the data structure, which includes offset and
length fields defining the location and length of the varying-length subfields. This concept is similar to what is
used by many of the APIs that return information in a receiver variable defined by a data structure.

Regardless of the format that you choose, divide the message into at least two sections:

1. A message header section containing the control data of the message, such as protocol ID, request ID and
type, reply key, message format/version, list control information, offset to and length of message data,
error and event codes, and other similar information, if applicable.

2. A message data section containing the actual request or response data.

Message Extensibility: How should we handle changes in or additions to the message format? For XML-
formatted messages, this concern is well covered; otherwise, including message format and/or message
version/release/modification level information in the message header provides the ticket to safely modify or
extend a message in the future.

http://iprodeveloper.com/print/rpg-programming/apis-example-data-queue-apis-and-c... 04-04-2014

APIs by Example: Data Queue APIs and CL Commands, Part 5 Page 2 of 8

Message Size Limit: Some message types are by nature limitless in size. For example, when embedded lists or
textual descriptions are involved, it might be impossible or senseless to define the maximum message length to
cover the longest imaginable message length. Instead, you have to include a mechanism that allows a message to
be split into more segments.

One way of providing such a mechanism is adding a correlation-ID and an end-of-message flag to the message
header information. The correlation-ID contains the sequence number of the message segment, and the end-of-
message flag is used to signal when the current message segment is the last in the chain.

For some purposes, such as displaying lists, a better approach is to have the client request the additional
segments one by one as new pages are required. There's no need to build and return a full list if only the first
page is ever displayed. In such a setup, a number-of-list-entries field and a list-offset field is added to the
message header. The list-offset field contains a value that uniquely identifies a list entry, such as a customer
number or product ID. In some cases, this could also be a composite value to ensure uniqueness.

The request message uses the first field to indicate how many list entries are needed to build one page, and it
uses the second field to define where the list should start. If the second field is empty, the list begins with the
first entry. The response message uses the number-of-list-entries field to indicate how many entries are
returned, and it uses the list-offset field to indicate whether there are more entries to request. If this field is
empty, the list is complete; otherwise, the value is to be used in the subsequent request message to retrieve the
next page, thereby ensuring that this page begins at the correct list position.

Whereas these methods of preserving information between client and server job are stateless by nature, other
methods involve establishing this persistence by means of a stateful message dialog, typically by assigning and
exchanging a session ID or session handle. The session ID is then used to identify the storage location needed to
preserve the persistent information. This could be a record in a file, a data area, a user space, a user index, or
something similar.

If such a design is chosen, it is important to include a mechanism in the protocol to signal when the use of the
session ID has completed, so that the related allocated storage can be released — and the session ID safely
reused.

Error and Event Communication: How should error and informational messages be communicated within
the data protocol, to ensure a correct and helpful dialog with the application user? Defining unique error codes
and event codes and related messages helps the receiving part of the application correctly identify and properly
communicate an error or event. Message files can be of great help in creating and administering error messages
and event messages.

Language Support: Do you need to support more than one language within the data protocol? If so, you must
include information in the message header to define the language that applies to the message dialog, so that all
language-sensitive information can be presented in the correct language.

Exception Tolerance: Foreseeable, logical errors, such as a customer record not found, should be handled by
the error and event communication facility that I just described. However, it is very important to include in your
application design an exception trap mechanism that catches — and communicates back — unforeseen errors.
These errors could be any kind of exception that occurs during program execution and that unhandled would
lead to an inquiry message being sent to the QSYSOPR message queue and bring the job to a screeching halt.
Over time, unhandled errors could lead to all the server jobs hanging in a message wait, and before that suffering
performance as the number of message waiting jobs grows. Registering ILE condition handlers, adding RPG/IV
*PSSR subroutines, and coding ditto monitor groups and (e)rror opcode extenders are all vital instruments in
establishing the defensive programming style (also) required for this type of application.

Debug Facility and Application Monitoring: How do you provide for daily monitoring of the application
and investigation of problems and errors? One way is to include log files to record the transaction dialog as well
as the application errors and events. If necessary because of performance or storage considerations, a switch
could control the transaction logging and activate it only if debugging the transaction flow or message dialog is
necessary.

http://iprodeveloper.com/print/rpg-programming/apis-example-data-queue-apis-and-c... 04-04-2014

APIs by Example: Data Queue APIs and CL Commands, Part 5 Page 3 of 8

To sum up all these considerations, let me continue with the practical implementation in today's sample
application context. In a real-life business application, the data exchange would include customer, product,
pricing, availability, order, accounting, payment, and many other types of information, but to avoid the problem
of generating test data, I've simply chosen to use some information already available on your system to
demonstrate a data queue—driven application: The TCP/IP server start information in the system file
QATOCSTART.

Your part of this demonstration is therefore to envision all the other types of information being distributed and
exchanged in real business applications of similar design and architecture. In this case, I've built the Display
TCP/IP Servers (DSPTCPSVR) command, which displays a list of all or a subset of the TCP/IP servers available
on your system. Using the display option in the list panel, you can further display all the selected server's start
attributes from the QATOCSTART file.

The following are the requirements for my data protocol design as far as request and response types are
concerned:

Request a list of TCP/IP servers, optionally subset by server type.

« Return a list of TCP/IP servers, including server file key information.
Request TCP/IP server information for a specific server.

Return TCP/IP server information for a specific server.

Using the QATOCSTART file layout, I then continue the design efforts by deciding which file fields to include in
the TCP/IP server list. The server name, being the primary key as well, is a good start. The server type and
autostart information completes the list. The remaining fields are then included in the full server attribute
message.

Here's what the QATOCSTART file layout looks like:

File : OQATOCSTART Record format . . . : QTOCSTRT
Library . . : QUSRSYS Record length . . . : 240

Field name Field type Buffer Length Key Column heading

SERVERTYPE Char 1 1 SVR TYP

SERVER Char 2 30 1 U Server

AUTOSTART Char 32 4 Auto Start

LIBRARY Char 36 10 Library of Program

PROGRAM Char 46 10 Program to Call

EXTSTRCMD Char 56 64 External Start CMD

EXTENDCMD Char 120 64 External End CMD

The next step is to decide what information my request and response message headers should include and, as
part of that consideration, how the server list data exchange should work. Here's what I've arrived at:

Data protocol: TCPSVR
Request ID: SVRLST - Inbound

Request header:

Data protocol 6 Char
Transaction ID 16 Char
Request ID 6 Char
Message format 8 Char
Message language 3 Char
Message offset value 30 Char
Number of entries req 4,0 Zoned Valid range 1-24

Request data:
Server type 1 Char

http://iprodeveloper.com/print/rpg-programming/apis-example-data-queue-apis-and-c... 04-04-2014

APIs by Example: Data Queue APIs and CL Commands, Part 5 Page 4 of 8

Request ID: SVRLST - Outbound

Response header:

Data protocol 6 Char
Transaction ID 16 Char
Request ID 6 Char
Event code 4,0 Zoned
Error code 4,0 Zoned
Event message offset 4,0 Zoned
Error message offset 4,0 Zoned
Response data offset 4,0 Zoned
Message offset value 30 Char
Number of entries rtn 4,0 Zoned
Entry length 4,0 Zoned
Response data:

Server type 1 Char
Server key name 30 Char
Server name 30 Char
Auto start 4 Char
Request ID: SVRATR - Inbound

Request header:

Data protocol 6 Char
Transaction ID 16 Char
Request ID 6 Char
Message format 8 Char
Message language 3 Char
Request data:

Server key name 30 Char
Request ID: SVRATR - Outbound
Response header:

Data protocol 6 Char
Transaction ID 16 Char
Request ID 6 Char
Event code 4,0 Zoned
Error code 4,0 Zoned
Event message offset 4,0 Zoned
Error message offset 4,0 Zoned
Response data offset 4,0 Zoned
Response data:

Server type 1 Char
Server name 30 Char
Auto start 4 Char
Program name 10 Char
Program library 10 Char
Start command 64 Char
End command 64 Char

Given the limited number of file records and the limited amount of server information, simply returning all
server information in the list would be no problem. The reason for not doing that is of course the intention of
demonstrating how to build the two different types of data exchange.

To complete the picture, I have also created the following two examples of log files to capture errors and events
as well as the transaction dialog:

http://iprodeveloper.com/print/rpg-programming/apis-example-data-queue-apis-and-c... 04-04-2014

APIs by Example: Data Queue APIs and CL Commands, Part 5

Error and event log file example:

File CBX1691F
Library QGPL
Field name Field type Buffer
LGTSTP Timestamp 1
LGTYPE Char 27
LGTRID Char 33
LGPGMN Char 49
LGFUNC Char 61
LGDGCD Zoned 73
LGDGMS Char 77
LGDGDT Char 84
Transaction log file example:
File CBX1692F
Library QGPL

Field name Field type Buffer
LGTSTP Timestamp 1
LGTYPE Char 27
LGTRID Char 33
LGDTPC Char 49
LGRQID Char 55
LGRQTP Char 61
LGDATA Char 62

Record
Record
Length
26
6
16
12
12
4 0
7
512

Record
Record
Length
26
6
16
6
6
1
4096

Page 5 of 8

format CBX1691R
length 595
Column

Log timestamp

Log type (LOGERR, LOGEVT)
Transaction ID

Program/module name
Function (*PSSR, Monitor,
Diagnostic code
Diagnostic message ID
Diagnostic data

etc.)

CBX1692R
4157

format

length

Column

Log timestamp
Log type (LOGTRN)
Transaction ID
Data protocol
Request ID
Request type
Log data

(I/0)

Now it's time to have a look at the data queue setup. For this application, there is a separate data queue for
inbound and outbound transactions, respectively. Separating the data flows makes great sense for a number of

reasons, including:

« Inbound traffic is typically handled first-in-first-out, whereas outbound traffic is keyed to ensure that the
server reply is received by the correct request sender. To support this requirement efficiently, the inbound
data queue should therefore be created with sequence *FIFO, and the outbound data queue should be

created with sequence *KEYED.

 Separating data flow means that you avoid the risk of data queue object lock conflicts between the sending

and receiving processes.

« Loss of client or server side processing is easier to detect if the inbound and outbound transactions are not
mixed. This setup also makes it easier to monitor the inbound workload to ensure that sufficient server
jobs are available to process the incoming requests.

Here are the commands to create the two data queues needed to establish the program-to-program

communication in the preceding setup:

CRTDTAQ DTAQ (CBX1691I)
MAXLEN (8192)
FORCE (*NO)
SEQ (*FIFO)
SENDERID (*NO)
SIZE (*MAX2GB 16)
AUTORCL (*YES)

TEXT ('Sample application inbound data queue')

CRTDTAQ DTAQ (CBX1690)
MAXLEN (8192)

FORCE (*NO)

http://iprodeveloper.com/print/rpg-programming/apis-example-data-queue-apis-and-c...

04-04-2014

APIs by Example: Data Queue APIs and CL Commands, Part 5 Page 6 of 8

SEQ (*KEYED)

KEYLEN (16)

SENDERID (*NO)

SIZE (*MAX2GB 16)

AUTORCL (*YES)

TEXT ('Sample application outbound data queue')

Both commands are part of the CL program to build the sample data queue application included with this article.
Alist of all sources involved in this APIs by Example, as well as instructions for how to create all sample
application objects, is at the end of this article. After successful creation of all objects, follow these steps to
perform a test run:

1.

Using the Change Current Library (CHGCURLIB) command, change your job's current library to the one
containing the application.

. Using the Run Data Queue Server (RUNDTAQSVR) command, start the server process: RUNDTAQSVR

LOGTRN(*YES). To avoid locking up your interactive session, submit the command to batch. Check that
the submitted job has gone active before proceeding.

. To generate some work for the server job, run the DSPTCPSVR command. The DSPTCPSVR command

requests the list of TCP/IP servers, one page at a time, from the server job through the inbound data
queue CBX169I and receives its reply from the outbound data queue CBX1690. Every time you page
down, the next block of TCP/IP servers is requested. The list request is sent from the CBX1692L UIM List
Exit Program. The list request is processed by the CBX1691 and CBX16911 data queue server programes.

The server job logs all transactions to the transaction log file CBX1692F. Using the Display Physical File
(DSPPFM) command, you can monitor the request/response dialog in the transaction log file CBX1692F:
DSPPFM FILE(CBX1692F) FROMRCD(*END).

From the DSPTCPSVR panel, you can select option 5=Display server start information. Doing so
generates one request/response per selected TCP/IP server. This can of course also be monitored in the
transaction log file. The server information request is sent from the CBX1692E UIM General Exit
Program. The server information request is processed by the CBX1691 and CBX16912 data queue server
programs.

To complete the test run, end the server job submitted in step 2. If you ran the data queue server job
interactively, use the SysRqs (System Request) key in that job and specify option 2, which runs the End
Request (ENDRQS) command.

To get a closer look at the transaction dialog and how the various parts of the sample application play together,
you could also step through the programs as they run in a source debug session.

This concludes my article series about Data Queue APIs and CL Commands. I hope these articles have brought
you some useful tools to work with data queues — and also the inspiration to do so.

This APIs by Example includes the following sources:

CBX169 -—- RPGLE -- Data Queue Sample Application - service functions
CBX169B -- SRVSRC -- Data Queue Sample Application - binder source
CBX1691 -- RPGLE -- Run Data Queue Server - TCPSVR Protocol

CBX16911 -- RPGLE -- Run Data Queue Server - SVRLST Request

CBX16912 -- RPGLE -- Run Data Queue Server - SVRATR Request

CBX1691H -- PNLGRP -- Run Data Queue Server - Help

CBX1691X -- CMD -— Run Data Queue Server

CBX1692 -- RPGLE -- Display TCP/IP Servers - CPP

CBX1692E -- RPGLE -- Display TCP/IP Servers - UIM General Exit Program
CBX1692H -- PNLGRP -- Display TCP/IP Servers - Help

http://iprodeveloper.com/print/rpg-programming/apis-example-data-queue-apis-and-c... 04-04-2014

APIs by Example: Data Queue APIs and CL Commands, Part 5 Page 7 of 8

CBX1692L -- RPGLE -- Display TCP/IP Servers - UIM List Exit Program
CBX1692P -- PNLGRP -- Display TCP/IP Servers - Panel Group

CBX1692X -- CMD -- Display TCP/IP Servers

CBX1691F -- PF -- Error/event log file

CBX1692F -- PF -- Transaction log file

CBX169M -- CLP -- Data Queue Sample Application - build application

To create all these objects, copy all sources to their respective source files in your library, then compile and run
CBX169M. Compilation instructions are in the source headers, as usual.

Articles and IBM documentation — Cross-Platform Data Queue Support:

Exploring the Client Access Data Queue APIs:
http: //www.systeminetwork.com/article.cfm?id=150

Programming with ODBC and Data Queues:
http://www.systeminetwork.com/article.cfm?id=6584

AS/400 Toolbox: Using Dataqueue, Record, and RecordFormat Classes:
http://www.systeminetwork.com/article.cfm?id=7353

Data Queues: A PC-to-iSeries Quick Link:
http://www.systeminetwork.com/article.cfm?id=15842

Use .NET to Develop iSeries Data Queue Applications:
http://www.systeminetwork.com/article.cfm?id=20273

Queue Up to Work with Data Queues in .NET Programs:
http://www.systeminetwork.com/article.cfm?id=53385

Using the Client Access for Microsoft Windows 95 and Windows NT OCX Control and OLE Automation Objects
with Visual Basic:

http: //www-

912.ibm.com/s dir/slkbase.NSF/515a7ef1f8deef8c8625680b00020380/def5574d27de318e862565¢2007¢cbe3e?
OpenDocument

CWBDQ: Q&A for the Optimized Data Queue API:

http: //www-

912.ibm.com/s dir/slkbase.NSF/515a7ef1f8deef8c8625680b00020380/2202a0b08aebcq1a862565¢2007¢b060?
OpenDocument

IBM Toolbox for Java:
http://www-03.ibm.com/servers/eserver/iseries/toolbox/overview.html

Data Queue Host Server Does Not Support DDM Data Queues:

http://www-

912.ibm.com/s dir/slkbase.NSF/f5ed8d76fdfgatbh88625680b00020384/8bc86c06f162066b86256d91006a6cac?
OpenDocument

The previous installments of this article series:

Data Queue APIs and CL Commands, Part 1
http://www.systeminetwork.com/article.cfm?id=53542

Data Queue APIs and CL Commands, Part 2
http://www.systeminetwork.com/article.cfm?id=53685

Data Queue APIs and CL Commands, Part 3
http: //www.systeminetwork.com/article.cfm?id=53850

http://iprodeveloper.com/print/rpg-programming/apis-example-data-queue-apis-and-c... 04-04-2014

APIs by Example: Data Queue APIs and CL Commands, Part 5

Data Queue APIs and CL Commands, Part 4
http://www.systeminetwork.com/article.cfm?id=54001

This article series demonstrates the following data queue APIs:

Retrieve Data Queue Description (QMHQRDQD) API:
http://publib.boulder.ibm.com/infocenter/iseries/v5ra/topic/apis/qmhqrdqd.htm

Send Data Queue (QSNDDTAQ) API:
http://publib.boulder.ibm.com/infocenter/iseries/v5ra/topic/apis/gsnddtaq.htm

Receive Data Queue (QRCVDTAQ) API:
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/qrevdtag.htm

Clear Data Queue (QCLRDTAQ) API:
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/qclrdtag.htm

Retrieve Data Queue Message (QMHRDQM) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr3/topic/apis/gqmhrdgm.htm

All data queue APIs are documented here:
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/obj2.htm

You can retrieve the source code for this API example from the following link:

http://www.pentontech.com/IBMContent/Documents/article/54098 170 DataQueues.zip

Page 8 of 8

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-data-queue-apis-and-cl-commands-

part-5

http://iprodeveloper.com/print/rpg-programming/apis-example-data-queue-apis-and-c...

04-04-2014

