
print | close

APIs by Example: Copying System i Message Descriptions

System iNetwork Programming Tips Newsletter

Carsten Flensburg

Carsten Flensburg

Thu, 03/26/2009 (All day)

Message files and message descriptions offer a convenient method of storing messages and text. The

IBM i OS itself makes extensive use of message descriptions for all sorts of user communication,

program to program messages, display panel constants, command definition prompts, and error text

to mention some of the most prominent and visual employments. I've previously published a couple

of articles discussing and displaying how to use message descriptions as an extension to the system

request menu as well as how to replace display file constants with message identifiers and texts. Look

below for links to these articles.

Being such a versatile and widely used facility, message files and message descriptions also have a lot

to offer in the domain of application development. In terms of for example user dialog, error

handling, and multi-language support, message descriptions provide a flexible and comprehensible

approach that can easily be incorporated and maintained by using the many message handling APIs

and CL commands available. Having taken advantage of the message facilities included with the IBM

i, I've often needed to copy a message description, but IBM hasn't provided a Copy Message

Description (CPYMSGD) command, but this article does!

If you need to copy message descriptions from one message file to another, the Merge Message File

(MRGMSGF) command helps you, but only if the message identifier won't change. Copying and

renaming a message description is impossible. Because the Retrieve Message (QMHRTVM) API can

return all message description attributes, I can write my own CPYMSGD command! More about the

CPYMSGD command in a minute.

A message description has quite a few attributes. A quick count on the Add Message Description

(ADDMSGD) command prompt finds 17 parameters in addition to the primary Message identifier

(MSGID) and Message file (MSGF) parameters. Some of these are really only useful for messages

sent by the IBM i, but others are valuable to programmers like me. I briefly mention some of the

most useful ones here, but I urge you to look up the ADDMSGD command's help text for more

details.

The Message (MSG) parameter holds the first-level message text that appears immediately on the

screen, in the joblog or where else a message queue or program message queue is displayed. The text

itself can have a maximum length of 132 bytes, but you can include substitution variables in the

format &1, &2, &3, etc. Each substitution variable is replaced on message display or retrieval by the

corresponding value defined by the Message data fields formats (FMT) list parameter and parsed

from the Message data (MSGDTA) string submitted with the message when it is sent. This is very

useful, as I show you later, if you want to tailor and adapt the final message text to reflect

information that is variable by nature.

Page 1 of 10APIs by Example: Copying System i Message Descriptions

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-copying-system-i-mes...

Also note that if you display a message in a message queue, the message text is retrieved dynamically.

This implies that if a message description's message text is changed after the message is sent, you'll

see the current text on your screen as opposed to the text in effect when the message was sent.

The Second-level message text (SECLVL) parameter contains the part of the message text shown if,

for example, a message is prompted by using function key F1 to display the Additional Message

Information panel or if your job's log setting has been configured to include second-level help text.

The SECLVL text lets you specify up to 3000 bytes of additional information and help text to further

explain and detail the first-level message text.

Substitution variables are also allowed and in effect in this part of the message, which further

supports three message format control instructions (&N, &P, and &B) that let you control text

wrapping and indentation when the second-level message text is displayed on screen. And now that

we're talking about the second-level message text, this is also where you find an explanation of how

to use the format control instructions mentioned: On the ADDMSGD or CHGMSGD command's

SECLVL parameter press F1 to display the parameter's online help text and scroll down to get all the

details.

The Message data fields formats (FMT) parameter mentioned earlier defines a consecutive number

of substitution variables by data type and length. For each &n substitution variable defined in the

MSG or SECLVL parameter, a corresponding FMT list element must be present; otherwise an error

message is returned, and the ADDMSGD or CHGMSGD command fails. This behavior can be

annoying if you've spent a lot of effort composing the text parts of the message description, because

unless you specified the ADDMSGD or CHGMSGD command on a command line, you have to start

all over again if you run into a mismatch between substitution variables and their FMT specified

definitions.

There's also an impressive number of message attributes enabling you to control the interaction

between a user and an inquiry type of message: The Reply type (TYPE), Maximum reply length

(LEN), Valid reply values (VALUES), Special reply values (SPCVAL), Range of reply values

(RANGE), Relationship for valid replies (REL) and the Default reply value (DFT) parameters let you

compose a set of rules enforced by the OS when a user enters a value and tries to respond to an

inquiry message. This ability can dramatically reduce the number of variations that you have to deal

with in the program receiving the reply.

I leave the rest of the message description attribute to your own study. Apart from the online help

text referred to earlier, you'll also find a lot of information covering this topic in the CL manual. In

the release 5.4 version of this manual, the section documenting the message concept begins on page

452.

As for examples of how to exploit message files and descriptions in an application development

context apart from the examples published earlier and mentioned herein, there's of course the

straightforward approach much similar to how the IBM i incorporates messaging in its components.

The basic steps involve using the Send program message (SNDPGMMSG) command or

(QMHSNDPM) API to send predefined message descriptions contained in a message file. The send

program message command or API allows you to configure a number of parameters to control the

target message queue, message data, message type and severity, and so on. You'll find plenty of

examples of this type of usage in practically all previously published APIs by Examples utilities.

Another approach involves the use of message files and descriptions as an application message and

text repository. Again, you create a number of message files and message descriptions, but instead of

sending the message directly, you use the Retrieve Message (QMHRTVM) API (or RTVMSG

Page 2 of 10APIs by Example: Copying System i Message Descriptions

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-copying-system-i-mes...

command) to retrieve the message text, optionally specifying a string of message data to replace

embedded substitution variables. Developing a naming scheme for your message descriptions,

message files, and libraries lets you devise a simple yet powerful and transparent message and text

store.

For the sake of demonstrating the basic idea, let's take an example of how to support a variety of

application modules, country languages, and product brands. The design objective is to return a

single message or text string based on a unique message ID in the range of 1 to 9999 and an input of

three contextual parameters from the application:

• A three-character application ID defining the origin of the request.

• A numeric ISO country code defining the language in which to return the text.

• A three-character brand code allowing you to differentiate the dialogue based on product

branding requirements.

A naming scheme supporting the above requirement could be established as follows:

• Message ID is composed by application ID and message ID in the format AAAMMMM

• Message file name is composed by company code and country code in the format XXXXCCC

• Library name is composed by company code and brand code in the format XXXXBBB

A=Application ID

M=Message ID

X=Company code

B=Brand code

So for company ACME, Inc.'s web application for the brand DeLuxe's German website, you would

end up with the following naming scheme:

• Message IDs in the range WEB0001-WEB9999

• Message file name ACME280

• Library name ACMEDLX

Adding new applications, countries, and brands in this scheme is structurally a fairly simple task (but

due to involved translation efforts, potentially work intensive). To establish support for German and

UK English websites as well as for message ID 201, the following commands would be executed:

1. CRTLIB ACMEDLX

2. CRTMSGF ACMEDLX/ACME280

3. CRTMSGF ACMEDLX/ACME826

4. ADDMSGD MSGID(WEB0201) MSGF(ACMEDLX/ACME280) MSG('User ID &1 ist

unbekannt.') FMT((*CHAR 10))

5. ADDMSGD MSGID(WEB0201) MSGF(ACMEDLX/ACME826) MSG('User ID &1 is

unknown.') FMT((*CHAR 10))

Retrieving the messages and texts can then be done by a single service program subprocedure

defining an interface along the following lines:

**-- Retrieve message:

D RtvMsg Pr 256a Varying

D PxBrdId 3a Value

D PxAppId 3a Value

Page 3 of 10APIs by Example: Copying System i Message Descriptions

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-copying-system-i-mes...

D PxCtrCod 3a Value

D PxMsgId 4a Value

D PxMsgDta 128a Varying Const Options

(*NoPass)

Retrieving the applicable message text would then be simply a matter of concatenating the relevant

parameters and executing the API call:

**-- Local variables:

D MsgId s 7a

D MsgFil s 10a

D MsgLib s 10a

D MsgDta s 256a Varying

**-- Local constants:

D RPL_SUB_VAL c '*YES'

D NOT_FMT_CTL c '*NO'

D COMP_ID c 'ACME'

D NULL c '

/Free

 MsgId = PxAppId + PxMsgId;

 MsgFil = COMP_ID + PxCtrCod;

 MsgLib = COMP_ID + PxBrdId;

 If %Parms >= 5;

 MsgDta = PxMsgDta;

 Else;

 MsgDta = NULL;

 EndIf;

 RtvMsgD(RTVM0100

 : %Size(RTVM0100)

 : 'RTVM0100'

 : MsgId

 : MsgFil + MsgLib

 : MsgDta

 : %Len(MsgDta)

 : RPL_SUB_VAL

 : NOT_FMT_CTL

 : ERRC0100

);

 If ERRC0100.BytAvl > *Zero;

 Return NULL;

 Else;

 Return %Subst(RTVM0100.Msg: 1: RTVM0100.RtnMsgLen);

 EndIf;

 /End-Free

Page 4 of 10APIs by Example: Copying System i Message Descriptions

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-copying-system-i-mes...

And to retrieve the message text, the following lines of code in a program binding to the service

program in question would do the trick:

/Free

 If VfyUsrId(CliRqs.UsrId) = *Off;

 SvrRsp.MsgId = '0201'

 SvrRsp.MsgDta = CliRqs.UsrId;

 EndIf;

 ...

 SvrRsp.MsgTxt = RtvMsg(CliRqs.BrdId

 : CliRqs.AppId

 : CliRqs.RqsSite

 : SvrRsp.MsgId

 : SvrRsp.MsgDta

);

/End-Free

Depending on the combination of the Brand ID, Application ID, and Requesting Site, the same

message ID and message data can lead to differently worded messages in different languages with no

further programming efforts. I hope you get the picture of both the idea behind the message text

repository infrastructure and the relative simplicity of making tailored messages and texts available

to your applications and modules in such a setup. The above scheme of course can and should be

adapted to reflect the individual requirements applicable to each specific application or module.

Taking advantage of message descriptions and message files in the way described here will often

bring you into a situation in which using an existing message description as a model for a new one

will speed up the process significantly, especially if substitution variables are involved. That need

turned my attention to another utilization of the QMHRTVM API and more specifically its return

format RTVM0400, which makes available all information required to perform a copy operation of a

message description.

The data structures embedded in the RTVM0400 format as well as the complex parameter lists of

the ADDMSGD command that I eventually use to create the copied message description, however,

turned my ambition of creating a Copy Message Description (CPYMSGD) command into a labor-

intensive task, as you might agree if you take a glance at the code accompanying this article. Given

the usefulness of the CPYMSGD command and the time it can help my colleagues and myself save

down the line while managing and adapting application message descriptions, this was time well

spent.

Apart from mapping API output to command input, I had to deal with the QMHRTVM API's

sensitivity to message file overrides. Calling the API in jobs in which one or more message file

overrides are in effect due to previous executions of the Override Message File (OVRMSGF) would

cause the API output to reflect the message file override, in case an override refers to the same

message file as the API message file input parameter. Some other APIs have input parameters to

define whether to ignore overrides, but alas the QMHRTVM API does not. So to ensure that the API

is returning information applying to the specific message file requested, you have to perform an

override to that message file immediately before the API call and delete the override again

Page 5 of 10APIs by Example: Copying System i Message Descriptions

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-copying-system-i-mes...

immediately after the API call. Although it works, I would prefer an API parameter to achieve the

same result.

The CPYMSGD command retrieves the message description attributes by means of a prompt

override program (POP), which, based on the two key input parameters Message ID and the qualified

Message file name, returns and formats all the necessary message information as a prompt string to

the CPYMSGD command. This method, however, implies that you must prompt the command in

order for the prompt override program to be called. Here's what the initial CPYMSGD command

prompt looks like:

 Copy Message Description (CPYMSGD)

 Type choices, press Enter.

 Message identifier Name

 Message file Name

 Library *LIBL Name, *LIBL,

*CURLIB

Entering an existing message ID and message file and pressing Enter causes the command's prompt

override program to fill in all other command parameters for you, as in the following example:

 Copy Message Description (CPYMSGD)

 Type choices, press Enter.

 Message identifier > CPF22A5 Name

 Message file > QCPFMSG Name

 Library > QSYS Name, *LIBL,

*CURLIB

 To message identifier *MSGID Name, *MSGID

 To message file *MSGF Name, *MSGF

 Library Name, *LIBL,

*CURLIB

 First-level message text 'Object &1 in &3 type *&2 not

secured by aut

Page 6 of 10APIs by Example: Copying System i Message Descriptions

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-copying-system-i-mes...

horization list &4.'

 Second-level message text . . . '&N Cause : The user

specified

authorization list &4 to be revoked from object &1 in &3, type *&2.

 The specified

object is not secured by authorization list &4. &N Recovery . . . :

 Use the

 display object authority (DSPOBJAUT) command to determine what

authorization

list is securing the object, if any. Issue the RVKOBJAUT command

again with the

authorization list that is securing the object to revoke the

authorization

list's authority.'

 ...

 Severity code 40 0-99

 Message data fields formats:

 Data type *CHAR *NONE, *QTDCHAR,

*CHAR...

 Length 10 Number, *VARY

 *VARY bytes or dec pos 0 Number

 Data type *CHAR *QTDCHAR, *CHAR,

*HEX...

 Length 7 Number, *VARY

 *VARY bytes or dec pos 0 Number

 Data type *CHAR *QTDCHAR, *CHAR,

*HEX...

 Length 10 Number, *VARY

 *VARY bytes or dec pos 0 Number

 Data type *CHAR *QTDCHAR, *CHAR,

*HEX...

 Length 10 Number, *VARY

 *VARY bytes or dec pos 0 Number

 + for more values

 Reply type *NONE *CHAR, *DEC,

*ALPHA, *NAME...

Page 7 of 10APIs by Example: Copying System i Message Descriptions

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-copying-system-i-mes...

 Maximum reply length:

 Length *NONE Number, *TYPE,

*NONE

 Decimal positions Number

 Valid reply values *NONE

 + for more values

 Special reply values:

 Original from-value *NONE

 Replacement to-value

 + for more values

 Range of reply values:

 Lower value *NONE

 Upper value

 Relationship for valid replies:

 Relational operator *NONE *NONE, *EQ, *LE,

*GE, *GT...

 Value

 Default reply value *NONE

 Additional Parameters

 Default program to call *NONE Name, *NONE

 Library Name, *LIBL,

*CURLIB

 Data to be dumped *NONE 1-99, *NONE, *JOB,

*JOBINT...

 + for more values

 Level of message:

 Creation date *CURRENT Date, *CURRENT

 Level number 1 1-99

Page 8 of 10APIs by Example: Copying System i Message Descriptions

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-copying-system-i-mes...

 Alert options:

 Alert type *NO *IMMED, *DEFER,

*UNATTEND...

 Resource name variable *NONE 1-99, *NONE

 Log problem *NO *NO, *YES

 Coded character set ID *JOB *JOB, *HEX, 37,

256, 273...

Specify either a To message identifier, a To message file, or both, then perform the desired changes

to the command parameters and press Enter. The specified message description will be created in

the specified message file. As always, you can also look up the command's online help text for more

details. As for the CPYMSGD command objects involved in the utility, here's a brief walk through to

give you an idea of how the command works:

• The CPYMSGD command definition. This is pretty much a copy of the ADDMSGD command

with the addition of the TOMSGID and TOMSGF parameters.

• The CBX201O command prompt override program. The program is called by the command

prompt facility once the CPYMSGD command's two key parameters have been entered. The

program calls the QMHRTVM API to retrieve the specified message description's attributes

and subsequently formats and returns a command prompt string specifying all the CPYMSGD

command's remaining input parameters.

• The CBX201C command choice program uses Retrieve CCSIDs (QLGRTVCD) API to produce

a list of all available and supported CCSID values for the CPYMSGD command's CCSID

parameter. This is a function similar to the one that the ADDMSGD command provides. The

ADDMSGD command's choice program is, however, sensitive to the name of the command

calling it as this parameter controls the list of available CCSID values returned, so I had to

write my own.

• The CBX201V command validity checker validates the primary CPYMSGD parameters among

other things to ensure that the specified message identifier and message file actually do exist.

• The CBX201H help text panel group describes the command and all its parameters. The main

part of the keyword help text is simply imported from the ADDMSGD command's help text

panel group. Using this approach can be quite a time saver and ensures that both accurate and

detailed information is provided.

• The CBX201 command processing program. This program retrieves the final CPYMSGD

command parameters and formats an ADDMSGD command string defining all returned

parameters. The command string is eventually processed by the Process Command

(QCAPCMD) API and possible errors are returned immediately to the caller by means of

another message handling API, the Move Program Message (QMHMOVPM) API.

I've done my best to test the CPYMSGD command thoroughly, but given the number of parameters

and possible combinations hereof, I cannot completely ensure that no unforeseen issues surface

when you put the command to work. So please give the CPYMSGD command a test run before

putting it into production. And be sure to let me know if you run into any issues using it.

This APIs by Example includes the following sources:

Page 9 of 10APIs by Example: Copying System i Message Descriptions

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-copying-system-i-mes...

CBX201 -- RPGLE -- Copy Message Description - CPP

CBX201C -- RPGLE -- Copy Message Description - Choice program

CBX201H -- PNLGRP -- Copy Message Description - Help

CBX201O -- RPGLE -- Copy Message Description - POP

CBX201V -- RPGLE -- Copy Message Description - VCP

CBX201X -- CMD -- Copy Message Description

CBX201M -- CLP -- Copy Message Description - Build command

To create all these objects, compile and run CBX201M, following the instructions in the source

header. As always, you'll find compilation instructions in the respective source headers.

IBM documentation:

CL message concept

Message ID overview

Previously published related articles:

APIs by Example: Message Handling (QMHRTVM/QMHMOVPM/QMHRCVPM)

- System request menu enhancement

APIs by Example: User Index APIs, Part One: Create User Index (CRTUSRIDX) command

APIs by Example: User Index APIs, Part Two: Convert Display File Constants (CVTDSPFCNS)

command

This article demonstrates the following Message Handling APIs:

Retrieve Message (QMHRTVM)

Move Program Message (QMHMOVPM) API

You can retrieve the source code for this API example from our website.

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-copying-system-i-

message-descriptions

Page 10 of 10APIs by Example: Copying System i Message Descriptions

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-copying-system-i-mes...

