4/4/2014 APIs by Example: Using the ERRC0200 Data Structure

ﬂ print | close

APls by Example: Using the ERRC0200 Data Structure

SystemiNetwork
Sy stem iNEWS Staff
Thu, 06/24/2004 (All day)

In this week's APIs by Example, Carsten Flensburg has written a sample program that demonstrates the
ERRCo0200 data structure.

The downloadable code for this article implements a DSPRTGDTA command that, when run, will display the
routing data of your job in the message line of y our screen.

The Retrieve Job Information (QUSRJOBI) APlis used toretrieve the routing data. If you wanted to, you could
change this utility todisplay a different job attribute such asthe job's internal ID, run priority, or time slice, as
this APIreturns all of this information.

Here's a screen shot of the DSPRTGDTA command

Display Job Routing Data (DSPRTGDTA)
Type choices, press Enter.

Job name * Name, *
User« . .« Name
Number 000000-999999
Bottom
F3=Exit F4=Prompt F5=Refresh Fl2=Cancel F13=How to use

F24=More keys

The message that it displays on the screen looks like this: Job 604420/KLEMSCOT/QPADEV0001 hasrouting
data "QCMDI".

HOW DOES IT WORK?

In the article "Getting Started with APIs, part 2" from the May 20, 2004 issue of this newsletter, it was
explained that there is a standard error code data structure that gets passed to an APL. When an error occurs,
the APIwill populate that data structure with error information and pass it back toyour program. This
standard error code data structure is called "ERRC0100."

The "ERRC0200" data structure is an alternative tothe original error code structure that contains an
important addition: The CCSID of the message.

WHAT'S A CCSID?

If you're not familiar with the term "CCSID" (pronounced "see-sid") it stands for "Coded Character Set Identifier"
and it tells the sy stem the character set and codepage of text that you want toshow to a user, store in a file, etc.
It's necessary because the different languages, conventions and cultures around the world require different
characters tobe available.

Since the charactersin each country aren't the same, simply copying the bytes from one place to another can
result in the wrong characters being displayed. For example, in the United States we typically use CCSID 37, in
the United Kingdom they use 285, and in Denmark (where Carsten lives) they use 2777. The hex character x'5B'
displayed in the U.S. appears as a dollar sign. If it's displayed in the United Kingom, the same hex value displays
asthe symbol for Pounds Sterling. In Denmark, it displays as the letter A with a small circle above it.

When you know the CCSID that text is written in, you can convert it using a translation table. If you take the
same example of a dollar sign written in CCSID 37 and convert it to CCSID 285, it will still be displayed as a

http://iprodeveloper.com/print/rpg-prog ramming/apis-example-using -errc0200-data-structure

13

4/4/2014 APIs by Example: Using the ERRC0200 Data Structure
dollar sign. If you take it again and convert it to CCSID 277, it will still be displayed as a dollar sign.

HOW DO | USE ERRC02007?

The "error code" parameter of an API can accept either the original error code structure (asIdemonstrated in
the May 20 article) or an ERRCo200 data structure.

The Information Center describesthe ERRCo200 data structure ashaving the following format:

Offset Use Type Field

Dec Hex

0 0 INPUT BINARY (4) Key

4 4 INPUT BINARY (4) Bytes provided

8 8 OUTPUT BINARY (4) Bytes available

12 C OUTPUT CHAR(7) Exception ID

19 13 OUTPUT CHAR (1) Reserved

20 14 OUTPUT BINARY (4) CCSID of the CCHAR data

24 18 OUTPUT BINARY (4) Offset to the exception data
28 1c OUTPUT BINARY (4) Length of the exception data

The first field, called "Key", should always contain a value of -1. This isimportant because it's how the APT knows
that you want touse ERRCo200! Since the first field of ERRC0100 is always zero or higher, when the API
receivesa -1, it knows that ERRCo200 is desired.

The bytes provided field tells the APThow much space is available for it to use when returning error
information.

The bytes available field is set by the APl and contains the amount of bytes of error data that the APIreturned to
your program. This field is set to zeroif the APl encounters noerrors. All of the other fields in the data structure
areunchanged if no error occurs.

The exception ID field contains the message ID of the error message, such as "CPF3C58"toindicate that the job
name was specified incorrectly.

The CCSID of CCHAR data field contains the CCSID as described above. The term CCHAR is short for "Convertible
Character"and refers to data that can be converted from one CCSID to another.

The offset of exception data and length of exception data fields are used to locate the values that are used to fill in
variablesin the message description as described in the May 20, 2004 issue of this newsletter.

The following is an example of coding this data structure in an ILE RPG program:

D ERRC0200 Ds Qualified

D Key 101 0 Inz(-1)

D BytPro 101 0 Inz(%Size(ERRC0200))
D BytAvl 101 0

D MsgId Ta

D la

D CcsId 101 0

D MsgDtaOfs 101 0

D MsgDtalen 101 0

D ExtraSpace 1024a

The BytAvl field will be set to zero if the API succeeds, or set tothe length of the error information if it fails. It is
used in the program to determine if anything went wrong, as illustrated in the following code snippet:

Callp RtvJobInf (JOBI0400
: %$Size(JOBI0400)
: '"JOBIO400'
: PxJobId
: *Blank
: ERRC0200
)

*

If ERRCO200.BytAvl > *Zero

*xQ Q000000

*

http://iprodeveloper.com/print/rpg-prog ramming/apis-example-using -errc0200-data-structure 2/3

4/4/2014 APIs by Example: Using the ERRC0200 Data Structure

. an error has occurred ...

When an error has occurred, the message data is extracted from the ERRCo200 data structure. The data itself
will be somewhere in the field that I called "ExtraSpace" above. The position that it's located in is found by
checking the value of the MsgDtaOfs field. You can extract the message data with the %subst() BIF as follows:

Eval MsgDta = %$Subst (ERRC0200
: ERRC0200.MsgDtaOfs + 1
: ERRC0200.MsgDtalLen
)

Q0

In the DSPRTGDTA utility, the Send Program Message (QMHSNDPM) APIis used tosend an escape message
when an error has occurred. The message that was extracted is passed to this API, as well as the Msgld and
CCSID returned in the ERRCo200 data structure.

The Send Program Message APIwill ensure that the characters are properly translated tothe job's CCSID so that
characters will always be displayed as they were intended to be.

The following code runs the Send Program Message APIL

Callp SndPgmMsg (ERRC0200.MsgId
: "QCPEMSG *LIBL'
: MsgDta
: SLen(MsgDta)
' *ESCAPE’
: '*PGMBDY'
HE
: MsgKey
: ERRC0200
: 10
' *NONE *NONE'
: *Zero
' *CHAR'
ERRC0200.CcsId

OO NN NN IO OO IO I]

The "Display Routing Data" utility demonstrates the following APIs and API concepts:

Retrieve Job Information (QUSRJOBI)
http://publib.boulder.ibm.com /iseries/var2/ic2924/info/apis/qusrjobi.htm

Send Program Message (QMHSNDPM)
http://publib.boulder.ibm.com /iseries/var2/ic2924/info/apis/QMHSNDPM.htm

Information about the ERRCo100 and ERRC0200 error code data structures
http://publib.boulder.ibm.com /iseries/v5r2/ic2924/info/apis/error.htm

Information about CCSIDs
http://publib.boulder.ibm.com /iseries/vsr2/ic2924/info/nls/rbagsccsidref.htm

CCSIDs as they relate to messages
http://publib.boulder.ibm.com /iseries/vAar2/ic2924 /info/nls/rbagscecsidmsgsup2.htm

You can download the sample code for this article from
http://www2.systeminetwork.com /noderesources/code/clubtechcode/Display RoutingData.zip .

The above source code was written by Carsten Flensburg. You can contact Carsten at
mailto:flensburg@novasol.dk .

Source URL: hitp://iprodeveloper.com /rpg-programming/apis-example-using-errco200-data-structure

http://iprodeveloper.com/print/rpg-prog ramming/apis-example-using -errc0200-data-structure 3/3

