
print | close

APIs by Example: Locales, APIs, and Time Zones

System iNetwork Programming Tips Newsletter

Carsten Flensburg

Carsten Flensburg

Thu, 10/12/2006 (All day)

In previous articles, I covered the time zone support introduced in V5R3 and the APIs available to

exploit this feature (links to these past articles are at the end of this article). However, the native

i5/OS time zone support has not been fully implemented yet. Currently the job time zone attribute is

merely copied from the time zone system value, so the system currently has no support for setting up

different time zones for different users or subsystems.

However, i5/OS already supports locales. These provide an alternative to control time zone at job or

user level, but this alternative involves some programming effort. Locales are the focus of this week's

APIs by Example.

Locales are intended to enable an application for internationalization, also known as application

globalization, in which you ensure that the application can be run independently of language, script,

culture, and coded character set.

Locales and, more specifically, the POSIX locales are thoroughly introduced in the article "Hello

World!: Globalization and POSIX Locales" (System iNEWS, February 1998, article ID 2599). The

article also describes in detail the steps involved in creating and setting up locales and provides a

comprehensive discussion of locale operands and configuration. Here is a link to the article:

http://www.SystemiNetwork.com/article.cfm?id=2599

Two flavors of locales exist on the System i: C and POSIX locales, object type *CLD and *LOCALE,

respectively. Because the POSIX version is more versatile and more widely used, this article deals

with the POSIX variant. The C compiler maps to the correct versions of the C locale functions based

on a compiler directive, but for use in RPG IV, we simply specify the appropriate locale function with

a _C_PSX_ prefix, as in _C_PSX_setlocale(). More about this later.

i5/OS includes a number of system-supplied locales and sources. The locale sources are in the source

file QLOCALESRC in library QSYSLOCALE. If you have no luck finding the QSYSLOCALE library,

please verify that 5722-SS1 option 21 - Extended NLS Support is installed on your system. The

Display Software Resources (DSPSFWRSC) command lets you check that easily. If option 21 is

missing, look here for information about how to install and enable locales:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/nls/rbagsinstalllocales.htm

As a matter of fact, i5/OS already lets you take advantage of locales when setting up user profiles to

reflect the cultural and regional settings appropriate for the location of the individual user. The

following article gives you all the details:

http://www.SystemiNetwork.com/article.cfm?id=16812

The IBM Info Center section titled "Work with locales" describes locale creation, locale

programming, and the different locale categories, and it contains a lot of other information about

Page 1 of 9APIs by Example: Locales, APIs, and Time Zones

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-locales-apis-and-time-...

locales:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/nls/rbagslocale.htm

To change a locale, you must copy the appropriate system locale source to a source file in a user

library and perform the necessary changes to the copy. You can use the following command to create

a locale source file in library QGPL:

 CRTSRCPF FILE(QGPL/QLOCALESRC)

 RCDLEN(112)

 TEXT('Locale source file')

Next, copy the locale source from QSYSLOCALE/QLOCALESRC to the newly created locale source

file. After making the required modifications, use the Create Locale (CRTLOCALE) command to

create the new locale:

 CRTLOCALE LOCALE('/QSYS.LIB/QGPL.LIB/EN_GB_285.LOCALE')

 SRCFILE

('/QSYS.LIB/QGPL.LIB/QLOCALESRC.FILE/EN_GB_285.MBR')

 CCSID(285)

This command creates a locale named EN_GB_285 in library QGPL, based on the locale source

member EN_GB_285 in file QLOCALESRC in library QGPL. The CRTLOCALE command's Coded

Character Set Identifier (CCSID) parameter is particularly important. The locale source

specifications defining character sets, collating sequence, and similar definitions are resolved to the

actual characters and signs at compilation time. So the specified CCSID must support all the

characters and signs defined in the locale source.

Because no command to display locale attributes exists, IBM simply specifies the CCSID used for the

system-supplied locales in the locale object description. Running the command:

 WRKOBJ *ALL/*ALL *LOCALE

displays a list of all currently available locales and their descriptions. The Info Center provides

documentation about the system-supplied locales and their recommended CCSID for each release.

Please follow the links at the end of this article to learn more.

The system-supplied locales' naming convention defines the locale name as LG_TT, where LG is a

two-letter language abbreviation and TT is a two-letter territory abbreviation. Euro-enabled locales

add an E to that naming scheme — LG_TT_E. For example, the U.S. system locale is named EN_US

(English, USA), and the Euro-enabled locale for Great Britain is named EN_GB_E (English, Great

Britain, Euro).

For user-created locales, adding the locale's CCSID as the final name extension is recommended. For

example, a user-created version of the U.S. locale would be EN_US_37.

Some standard locales span more than one time zone. Because the API example in this article

exploits the locale time zone support, I've extended the locale naming standard to include the time

zone instead of the CCSID. For Mountain Standard Time in the U.S., for example, that would lead to

a name of EN_US_MST. I then specify the CCSID in the locale object description, as does IBM for

the system-supplied locales.

Locales define seven different categories of locale information:

Page 2 of 9APIs by Example: Locales, APIs, and Time Zones

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-locales-apis-and-time-...

LC_COLLATE - Describes collating sequence for all characters

 provided by the CCSID used to create the locale

LC_CTYPE - Defines locale character classes and mappings

LC_MESSAGES - Defines the formats and values for affirmative and

 negative responses

LC_MONETARY - Describes rules and symbols for the region's

 monetary numeric data

LC_NUMERIC - Provides formats and symbols for nonmonetary

 numeric data

LC_TIME - Defines date and time formats used by time-

 formatting functions

LC_TOD - Extends the LC_TIME category, defining the time

 difference to Greenwich Mean Time (GMT) and the rules

applying to Daylight Saving Time (DST)

For an in-depth description of these categories, check out the IBM documentation and POSIX locale

article referenced earlier in this article.

One noticeable aspect of locales is their influence on the behavior of certain C/C++ runtime library

functions, as documented by the ILE C/C++ Programmer's Guide — Chapter 19: International

Locale Support:

http://publib.boulder.ibm.com/iseries/v5r2/ic2924/books/c092712331.htm

More specific documentation is in the Locale-Sensitive Run-Time Functions table:

http://publib.boulder.ibm.com/iseries/v5r2/ic2924/books/c092712331.htm#Header_490

The behavior and result of the functions in this table are controlled by the locales and categories

currently set for the runtime executing these functions.

The LC_TOD locale category is an IBM extension to the LC_TIME category, which defines the rules

and settings that apply to the locale's time zone and DST. The LC_TOD category includes the

following operands:

tzdiff - Time zone difference to Coordinated Universal Time (UTC)

(GMT) in minutes

tname - Time zone name (abbreviation)

dstname - DST name (abbreviation)

dststart - Start date for DST

dstend - End date for DST

dstshift - DST shift time in seconds.

Page 3 of 9APIs by Example: Locales, APIs, and Time Zones

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-locales-apis-and-time-...

The system-supplied locales, however, specify no values for this category's operands. So to activate

the LC_TOD category, some research about locale programming is required. Using the Google search

engine, I easily found a number of references to the LC_TOD category on different IBM sites, but

unfortunately none of the different documents agreed about how to specify the various operands!

Applying the trial-and-error method, I arrived at the conclusion that follows. My investigation most

likely did not cover all aspects of this issue, though, so if you find reason to disagree, please let me

know. Here's what I've come up with so far:

tzdiff - Time zone difference to UTC in minutes:

 A positive number indicates a location west of GMT

 (e.g., the U.S.)

 A negative number indicates a location east of GMT

 (e.g., Italy, Denmark, Russia)

tname - Time zone name:

 The abbreviated form (e.g., EST, MST, CET, AEST)

 (Run the WRKTIMZON command to verify)

dstname - Daylight Saving Time:

 The abbreviated form (e.g., EDT, MDT, CEST, AEDT)

 (Run the WRKTIMZON command to verify)

dststart - Start date for DST:

 Four integers specifying the month, week, day, and time

 that DST starts:

 Month: 1-12,

 1=January, 12=December

 Week: 0, 1 to 4, -1 to -4

 0=The Day field represents the day of the month

rather

 than the day of the week.

 1=First week of month

 4=Fourth week of month

 -1=Last week of month

 -2=Second to last week of month

 -4=Fourth to last week of month

 Day: 1-7, 1-31

 1=Monday, 7=Sunday (when Week field is not 0)

 1-31=Day of month (when Week field is 0)

 Time: 0-86399 seconds

 The number of seconds after midnight

 the shift takes place

dstend - End date for DST:

 Four integers specifying the month, week, day, time

 that DST ends. Same rules as for dststart.

dstshift - DST shift time in seconds:

 An integer value specifying the DST

 shift in seconds.

Page 4 of 9APIs by Example: Locales, APIs, and Time Zones

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-locales-apis-and-time-...

Please note that in the southern hemisphere, DST is observed (where applicable) at the opposite time

of year than in the northern hemisphere. When winter rules in the U.S., it's summertime in Australia,

and vice versa.

To help clarify the preceding rule set, and based on the values that the WRKTIMZON command

currently provides for the different time zones, I created some example LC_TOD's for the following

time zone locales:

EN_AU_AEST (Australian Eastern Standard Time):

 LC_TOD

 tzdiff -600

 tname ""

 dstname ""

 dststart 10,-1,7,7200

 dstend 4,-1,7,7200

 dstshift 3600

 END LC_TOD

DA_DK_277 (Central European Time - Denmark):

 LC_TOD

 tzdiff -60

 tname ""

 dstname ""

 dststart 3,-1,7,7200

 dstend 10,-1,7,10800

 dstshift 3600

 END LC_TOD

EN_GB_285 (Greenwich Mean Time - Great Britain):

 LC_TOD

 tzdiff 0

 tname ""

 dstname ""

 dststart 4,-1,7,3600

 dstend 10,-1,7,7200

 dstshift 3600

 END LC_TOD

EN_US_EST (Eastern Standard Time):

 LC_TOD

 tzdiff 300

 tname ""

 dstname ""

 dststart 4,1,7,7200

 dstend 10,-1,7,7200

 dstshift 3600

Page 5 of 9APIs by Example: Locales, APIs, and Time Zones

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-locales-apis-and-time-...

 END LC_TOD

EN_US_CST (Central Standard Time):

 LC_TOD

 tzdiff 360

 tname ""

 dstname ""

 dststart 4,1,7,7200

 dstend 10,-1,7,7200

 dstshift 3600

 END LC_TOD

EN_US_MST (Mountain Standard Time):

 LC_TOD

 tzdiff 420

 tname ""

 dstname ""

 dststart 4,1,7,7200

 dstend 10,-1,7,7200

 dstshift 3600

 END LC_TOD

EN_US_PST (Pacific Standard Time):

 LC_TOD

 tzdiff 480

 tname "

"

 dstname "

"

 dststart 4,1,7,7200

 dstend 10,-1,7,7200

 dstshift 3600

 END LC_TOD

As I mentioned earlier, some confusion exists about the correct specification of the

various operands, so be sure to test and verify thoroughly before implementing any of

these LC_TODs in a production environment.

To enable you to verify your success as a locale programmer, I wrote the Display

Locale Time of Day (DSPLOCTOD) command. The DSPLOCTOD command's CPP also

serves as an example of how to use the C/C++ runtime library functions that make

calculating a local timestamp based on a locale possible — provided that the locale has

a valid LC_TOD category specified.

Here's the DSPLOCTOD command prompt:

Page 6 of 9APIs by Example: Locales, APIs, and Time Zones

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-locales-apis-and-time-...

 Display Locale Time of Day (DSPLOCTOD)

 Type choices, press Enter.

 Locale Name, *USRPRF

 Library *LIBL Name, *LIBL, *CURLIB

 User profile Character value

You can specify either a qualified locale object name or the name of a user profile that

has a specific, named locale defined. That locale is then retrieved from the user profile.

In both events, the locale in question is used to calculate a local timestamp, based on

the time zone and DST information in the locale. The locale name and the local

timestamp are then displayed in a window on the screen:

..

: :

: Locale object . . . : /QSYS.LIB/QGPL.LIB/EN_US_MST.LOCALE :

: Current local time . : 2006-10-07-11.55.15.060688 :

: :

: :

: :

: :

: Bottom :

: F12=Cancel :

: :

:..:

The command's CPP performs the following actions:

1. If *USRPRF is specified for the locale parameter, the locale path name is

retrieved from the user profile specified as the second parameter.

2. The locale is set using the _C_PSX_setlocale function. This returns a pointer to

the previous locale in effect, and this locale name is resolved and saved to be

restored later.

3. The current UTC (GMT) timestamp is retrieved using the gettimeofday() API.

This function returns two data structure parameters named timeval and

timezone. The timeval structure contains an epoch-1970 value (seconds and

microseconds since 1 January 1970, 00:00:00 UTC) and is used as input for the

next step.

4. The _C_PSX_localtime function (which is locale sensitive) takes the seconds part

of the timeval data structure as input and returns the local time in a tm (short for

"time") data structure. The tm structure is then used to calculate the actual

timestamp, and the microsecond part of the timeval structure is added to arrive

at an exact offset of the initial UTC timestamp.

5. The locale name and calculated timestamp is displayed in a window for

verification.

6. Finally, the initially retrieved previous locale is restored.

Page 7 of 9APIs by Example: Locales, APIs, and Time Zones

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-locales-apis-and-time-...

You assign a locale to a user profile using the Change User Profile (CHGUSRPRF)

command. The locale must be specified in path name format:

 CHGUSRPRF USRPRF(JAN)

 LOCALE('/QSYS.LIB/QGPL.LIB/DA_DK_277.LOCALE')

After the preceding command is run, any job started using the specified user profile

has the DA_DK_277 locale set, and the job's LANG environment variable specifies that

same locale as well. This behavior applies to both batch and interactive jobs.

If you're looking for more information and documentation about time zones, daylight saving time,

and the like, the following site is a great place to start your search:

http://wwp.greenwichmeantime.com/

This APIs by Example includes the following sources:

CBX163 -- Display Locale Time of Day - CPP

CBX163B -- Display Locale Time of Day - Binder source

CBX163H -- Display Locale Time of Day - Help

CBX163S -- Display Locale Time of Day - Services

CBX163V -- Display Locale Time of Day - VCP

CBX163X -- Display Locale Time of Day

CBX163M -- Display Locale Time of Day - Build command

To create all these objects, compile and run CBX163M. Compilation instructions are in the source

headers, as usual.

The API date and time zone support article is here:

http://www.SystemiNetwork.com/article.cfm?id=51703

Parts one, two, and three of the related User Application Information APIs article are here:

http://www.SystemiNetwork.com/article.cfm?id=52288

http://www.SystemiNetwork.com/article.cfm?id=52387

http://www.SystemiNetwork.com/article.cfm?id=52457

System-supplied locales and recommended CCSIDs - V5R3:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/nls/rbagssyssuplocalesourcedef.htm

System-supplied locales and recommended CCSIDs - V5R4:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/nls/rbagssyssuplocalesourcedef.htm

This article demonstrates the following APIs:

Get Current UTC Time (gettimeofday()) function:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/gettod.htm

Set Locale (setlocale()) function (page 322 of ILE C/C++ Run-Time Library Functions, SC41-5607-

02):

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/books/sc415607.pdf#SETLOC

Page 8 of 9APIs by Example: Locales, APIs, and Time Zones

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-locales-apis-and-time-...

Convert Time (localtime()) function (page 173 of ILE C/C++ Run-Time Library Functions, SC41-

5607-02):

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/books/sc415607.pdf#LOCALT

Retrieve User Information(QSYRUSRI) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/qsyrusri.htm

Retrieve Job Information (QUSRJOBI) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/qusrjobi.htm

Convert a Graphic Character String (QTQCVRT) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/CDRCVRT.htm

Retrieve Message (QMHRTVM) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/QMHRTVM.htm

Send Program Message (QMHSNDPM) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/QMHSNDPM.htm

Retrieve Object Description (QUSROBJD) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/qusrobjd.htm

Display Long Text (QUILNGTX) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/quilngtx.htm

You can retrieve the source code for this API example from

http://www.pentontech.com/IBMContent/Documents/article/53355_124_LocaleTimeZone.zip.

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-locales-apis-

and-time-zones

Page 9 of 9APIs by Example: Locales, APIs, and Time Zones

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-locales-apis-and-time-...

