APIs by Example: Cryptographic Services APIs, Part 6 Page 1 of 7

ﬂ print | close

APls by Example: Cryptographic Services APIs, Part 6

System iNetwork Programming Tips Newsletter

Carsten Flensburg

Carsten Flensburg
Thu, 02/16/2006 (All day)

In the previous installments of this article series, I built a number of tools to establish an encryption
key hierarchy: the Create Master Key (CRTMSTK) command, the Create Key Encrypting Key
(CRTKEK) command, and the Create Data Encryption Key (CRTDTAK) command. In this
installment, I put together all the pieces that I've provided so far and use these encryption key
commands and a set of new functions to encrypt and decrypt sensitive data.

To perform this demonstration, I've written two sample commands, the Add Customer Record
(ADDCUSRCD) and the Change Customer Record (CHGCUSRCD) command. The ADDCUSRCD
command prompt has the following layout:

Add Customer Record (ADDCUSRCD)
Type choices, press Enter.

Customer name
Address

City .

State

Zip code

Phone number

A successful execution of the ADDCUSRCD command returns a completion message specifying the
assigned customer number:

Customer number 1 added.
The ADDCUSRCD CPP encrypts and stores the sensitive customer data in the CBX1502F data file.

Creating a customer record lets you also change that record. The CHGCUSRCD command initially
looks like this:

Change Customer Record (CHGCUSRCD)
Type choices, press Enter.
Customer number

If you enter an existing customer number and have the required usage authorization (which I discuss
momentarily), a prompt override program retrieves and decrypts the customer data for that
customer. The customer data is then presented in the full command prompt:

http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-service... 03-04-2014

APIs by Example: Cryptographic Services APIs, Part 6 Page 2 of 7

Change Customer Record (CHGCUSRCD)
Type choices, press Enter.
Customer number >1
Customer name 'George Best !
Addresso 'E. Washington St. 7 '
City . « « o « « . .00 . .. 'Phoenix !
State oo 000000 'AZ!
Zip code '85077"
Phone number '6029328070"

Changing any of the customer data and pressing Enter causes all data to be encrypted and written to
the customer record.

To run the preceding commands, a user must have usage authorization to the
CBX_CRYPTO_KEY_USAGE user function, which was installed earlier during creation of command
objects. The command WRKFCNUSG FCNID(CBX_CRYPTO_KEY_USAGE) shows you exactly
which user profiles are authorized and also lets you add or remove user profiles.

Apart from this requirement, here's a quick setup guide to prepare the test:

1.

2,

Create a master key using the CRTMSTK command: CRTMSTK

Create a key-encrypting key using the CRTKEK command: CRTKEK KEYLABEL
(CBX_KEK 0001)

Create a data encryption key using the CRTDTAK command: CRTDTAK KEYLABEL
(CBX_DTAK_0001) KEKLABEL(CBX_KEK_0001)

Use Data File Utility (DFU) or some other such utility to update the CBX1501F control file.
Specify the data key label (in the preceding example, CBX_DTAK_0001) in the KEYLBL field.
Specify whatever number you want to be the initial customer number in the field LSTCUS.

Run the ADDCUSRCD command to create a customer record.

Run the RUNQRY *N CBX1502F command to verify that the record has been added and the
customer data encrypted.

Run the CHGCUSRCD command, specifying the customer number returned in step 5. You
should now be able to see in cleartext the data previously entered. Try to change the data and
repeat this step to verify the change.

Run the command WRKFCNUSG FCNID(CBX_CRYPTO_KEY_USAGE) and remove your
function usage authorization: Option 2, specify USER() USAGE(*NONE). Now try to run step
7 again. (Remember to reinstall your function usage authorization when your test is complete,
if required.)

The interfaces between the CPPs and the key store and cryptographic functions in the two previously
published service programs, CBX146 and CBX147, are located in a new CBX150 service program,
making the following functions available to the commands:

GetDtaAlg() -- Get data encryption algorithm context
GetDtaKeylb () —-- Get customer data key label

http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-service... 03-04-2014

APIs by Example: Cryptographic Services APIs, Part 6 Page 3 of 7

GetNxtCusNo () —-- Get next customer number
VfyCusDta () -- Verify customer data
GetCusDta () -- Get customer data
AddCusDta () -- Add customer data
ChgCusDta () -- Change customer data

During the research, development, and testing that I performed while writing these articles, I
encountered a variety of concerns and topics related to the practical use of the Cryptographic
Services APIS. One is related to the Advanced Encryption Algorithm's (AES's) use of padding, and it
has an important impact on the space required to store the encrypted data.

As I've mentioned, the AES algorithm produces a cipher string length that is a multiple of the
specified block length (which is 16 bytes in this article series). It does, however, also always apply
padding to the cleartext string before encrypting it. This means that if you have a cleartext string
length that is an exact multiple of the block length, AES adds a full block length of padding to the
cleartext string.

In my example, the customer data field occupies 80 bytes in the customer file. This is because the
actual customer data takes up 77 bytes, thus leaving 3 bytes for the padding. Having the Encrypt
Data API encrypt the full 80-byte string, which is an exact multiple of 16, would cause the API to add
another full block length of 16 bytes of pad characters, producing a cipher string of 96 bytes.

You must therefore pass only the 77 bytes of customer data to the Encrypt Data API, to ensure that it
doesn't return a cipher string longer than the storage available in the file to hold it. T achieve this by
trimming the blank pad field when passing the cleartext data to the Encrypt Data API.

A fairly comprehensive and detailed discussion of the concept of padding in cryptography is in
"Using padding in Encryption":
http://www.di-mgt.com.au/cryptopad.html

Another cryptographic API implementation concern emerged while I was testing the commands that
I present in this article. This concern was the context token behavior that requires the key and
algorithm context tokens used in the process of generating a new key context token to remain valid in
order for the new key context token to also be valid in a subsequent cryptographic process.

Let me explain that in a bit more detail: When I generate a data encryption key context token, I
specify the key-encrypting key (KEK) context token and a key management algorithm context token
as input to the Create Key Context API. This is necessary because, as you remember, this is how the
data encryption key value is stored: Encrypted under a KEK. So to avoid having to decrypt the data
encryption key before creating a data encryption key context, I simply pass the KEK context as well
as the KEK algorithm context token to the Create Key Context API. This way the KEK itself is never
exposed.

The result of this process is a data encryption key context token. This data encryption key context
token, however, is deemed valid only by, for example the Encrypt Data API, if the key encryption key
and algorithm context tokens used to produce the data encryption key context are also still valid (i.e.,
have not been destroyed or invalidated in the meantime).

So using key context tokens requires you to manage all involved context tokens for the full period of
usage and perform the necessary housekeeping when they are no longer needed. Different methods
are available to perform such housekeeping and should be carefully evaluated to minimize the risk of
exposure in each individual application or context.

http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-service... 03-04-2014

APIs by Example: Cryptographic Services APIs, Part 6 Page 4 of 7

Reader Matt Haas brought yet another concern to my attenion during the course of this article series.
Matt pointed out the challenge of having to exchange encrypted data between different systems and
different code pages and character sets. Because modern cryptographic methods always operate at
the bit level, as opposed to the character level, it is of highest importance to take into consideration
when and where data conversion is going to take place, if such a requirement is involved in your set
up. Although it's beyond the scope of the cryptographic API example that I present here, you might
want to read the very interesting and detailed discussion of this complex topic in "Encryption with
International Character Sets":

http://www.di-mgt.com.au/cryptolnternational.html

And if you're hungry for even more cryptography reading, look up "An Overview of Cryptography,"
by Gary C. Kessler, which provides a comprehensive overview with many relevant links to even more
detailed and specific information:

http://www.garykessler.net/library/crypto.html

As for the key management concern, please note that V5R4 has added a set of Key Management
APIs. Check out the Cryptographic Services API manual for further details and new information
about the subject:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/apis/catcrypt.htm

I've provided the following cryptographic and key management functions with this and previous
articles in this series:

GenAesKey () —-- Generate AES cipher key

GenInzVct () -- Generate initialization vector

GetAlgCtx () —-- Get algorithm context

GetMgtAlg () -- Get key management algorithm context
GetKeyCtx () —-- Get key context

RmvAlgCtx () -- Remove algorithm context

RmvKeyCtx () —-- Remove key context

EncDtaStr () -- Encrypt data string using context tokens
DecCphStr () —-- Decrypt cipher string using context tokens
AddKeyEnt -- Add key entry to key store

0)
ChgKeyEnt () -—- Change key store entry
0

ChkSubKey —-- Check sub key existence
FndNxtKeyE () -- Find next key entry
FndTopKeyE () -- Find top key entry

GetKeyAtr () -- Get key attribute

GetKeySto () -- Get key store

GetMstKeylLb () —-- Get master key label
RmvKeyEnt () -—- Remove key store entry
ViyKeyEnt () -- Verify key store entry
GetFcnUsg () -- Get function usage
GetMstKeyTk () —-- Get master key context token
GetKekTkn () -- Get key encryption key context token
GetDtaKeyTk () —-- Get data key context token
RmvParCtxTk () —-- Remove parent context tokens

http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-service... 03-04-2014

APIs by Example: Cryptographic Services APIs, Part 6

Page 5 of 7

NOTE: I recommend reading all parts of this article, and taking into account all recommendations
and warnings stated in each part of this article, before using any or part of the tools provided in this
article series in a production environment.

You can find part one of this article here:
http://www2.systeminetwork.com/article.cfm?id=51236

Part two here:

http://www2.systeminetwork.com/article.cfm?id=51786

Part three here:

http://www2.systeminetwork.com/article.cfm?id=51863

Part four here:

http://www2.systeminetwork.com/article.cfim?id=51962

Part five here:

http://www2.systeminetwork.com/article.cfm?id=52017

This APIs by Example includes the following source members:

CBX147 -- Cryptographic key management service program
CBX147B -- Service program binder source

These sources are both revised versions of previously published sources, which have been updated to
support the new functions that this article introduces. Please replace these sources in your utility
library's source files. The CBX150M program ensures that the service program gets correctly

recompiled.

The following new sources deliver the ADDCUSRCD and CHGCUSRCD commands and related

services:
CBX150 -- Customer data management - service program
CBX150B -- Service program binder source
CBX1501 -- Add Customer Record - command processor
CBX1501H -- Add Customer Record - help
CBX1501V -- Add Customer Record - validity checker
CBX1501X -- Add Customer Record - command
CBX1502 -- Change Customer Record - command processor
CBX1502H -- Change Customer Record - help
CBX1502V -- Change Customer Record - validity checker
CBX15020 -- Change Customer Record - prompt override program
CBX1502X -- Change Customer Record - command

I have included a program that performs all necessary command and object creation:

CBX150M -- Command objects creation

Compilation instructions are also in the source headers, as usual.

This article demonstrates the following APIs:

http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-service...

03-04-2014

APIs by Example: Cryptographic Services APIs, Part 6 Page 6 of 7

Add Validation List Entry (QsyAddValidationLstEntry) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr3/topic/apis/asyvavle.htm

Change Validation List Entry (QsyChangeValidationLstEntry) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr3/topic/apis/QSYCVLE.htm

Find First Validation List Entry (QsyFindFirstValidationLstEntry) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr3/topic/apis/QSYFFVLE.htm

Find Next Validation List Entry (QsyFindNextValidationLstEntry) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr3/topic/apis/QSYFNVLE.htm

Find Validation List Entry (QsyFindValidationLstEntry) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr3/topic/apis/QSYFIVLE.htm

Remove Validation List Entry (QsyRemoveValidationLstEntry) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr3/topic/apis/QSYRVLE.htm

Encrypt data (Qc3EncryptData) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr3/topic/apis/gc3encdt.htm

Decrypt data (Qc3DecryptData) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr3/topic/apis/qc3decdt.htm

Generate Symmetric Key (Qc3GenSymmetricKey) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr3/topic/apis/qc3gensk.htm

Generate Pseudorandom Numbers (Qc3GenPRNs) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr3/topic/apis/qc3genprns.htm

Create Algorithm Context (Qc3CreateAlgorithmContext) API:
http://publib.boulder.ibm.com/infocenter/iseries /vsr3/topic/apis/qc3crtax.htm

Create Key Context (Qc3CreateKeyContext) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr3/topic/apis/qe3ertkx.htm

Destroy Algorithm Context (Qc3DestroyAlgorithmContext) API:
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/qc3desax.htm

Destroy Key Context (Qc3DestroyKeyContext) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr3/topic/apis/qc3deskx.htm

Send Program Message (QMHSNDPM) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr3/topic/apis/QMHSNDPM.htm

Move Program Messages (QMHMOVPM) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr3/topic/apis/gmhmovpm.htm

Resend Escape Message (QMHRSNEM) API:
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/QMHRSNEM.htm

You can retrieve the source code for this API example from the following link:
http://www.pentontech.com/IBMContent/Documents/article/52119 58 CryptoServices6.zip

http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-service... 03-04-2014

APIs by Example: Cryptographic Services APIs, Part 6 Page 7 of 7

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-cryptographic-services-
apis-part-6

http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-service... 03-04-2014

