
print | close

APIs by Example: Cryptographic Services APIs, Part 7

System iNetwork Programming Tips Newsletter

Carsten Flensburg

Carsten Flensburg

Thu, 03/09/2006 (All day)

This is the final installment of the Cryptographic Services APIs article series. Today, I add the

Change Master Key (CHGMSTK) command to the set of cryptographic key management commands

and functions that I have presented so far. Changing a master key (or any other cryptographic key) is

necessary in the event that the key has been compromised, or as part of a key expiration scheme.

The latter is calculated primarily based on the correlation between the key length in bits and the

processor power required to run a successful brute-force attack against the key. One way to protect

the key is to change a cryptographic key before it is practically possible to break it. This is only one

strategy, however, and it should be combined with other defense lines to ensure an overall sufficient

level of security in all cryptographic applications and setups.

For more details about the key length aspect of cryptography, check out the following report:

http://www.crypto.com/papers/keylength.pdf

Though the CHGMSTK command on the surface looks exactly like the Create Master Key

(CRTMSTK) command, it is faced with a challenge that CRTMSTK is not: One or more key

encrypting keys (KEK) could already be encrypted under the current master key.

The CHGMSTK command must therefore be able to retrieve and decrypt any KEK using the current

master key, encrypt it using the new master key and update the key store with the changed master

key value. Fortunately a Cryptographic Services API that supports that exact requirement exists: The

Translate Data (Qc3TranslateData) API takes a data string encrypted under one key and translates

that data to encryption under another key -- all in one process.

Because both the decryption and encryption process is performed in one step, the encrypted data is

never exposed in its cleartext form. The Translate Data API requires two pairs of context tokens: the

decryption key and algorithm context tokens and the encryption key and algorithm context tokens.

To get all the details about the Translate Data API, follow the link at the end of this article.

Here's an overview of the Change Master Key process, in steps:

1. Place a lock on the key store validation list to prevent the CHGMSTK command from being

run in parallel.

2. Create a key and algorithm context token for the current master key.

3. Change the master key value in the key store as specified on the key input parameter.

4. Create a key and algorithm context token for the new master key.

5. Retrieve a list of all KEKs encrypted under the old master key.

Page 1 of 6APIs by Example: Cryptographic Services APIs, Part 7

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-service...

6. For each KEK entry, use the Translate Data API to translate encryption from the old master

key to the new master key, using the context tokens from steps 2 and 4.

7. Destroy all context tokens and release the key store lock.

To avoid a potential disaster if the process is interrupted because of an unforeseen event, I strongly

recommend that you have a secure and timely backup procedure in place for the key store validation

list. A restore could be the only way to recover the key store entries -- and thereby access to the

encrypted data -- in such a case.

The CHGMSTK command displays the following prompt:

 Change Master Key (CHGMSTK)

Type choices, press Enter.

Key length 16 16, 24, 32

Key bytes 1-8 *GEN

Key bytes 9-16 *GEN

As with all the other key management commands that I've presented so far, special authorization is

required to the CBX_CRYPTO_KEY_USAGE user function, which was installed during creation of

command objects in a previous article in this series. The command WRKFCNUSG FCNID

(CBX_CRYPTO_KEY_USAGE) shows you exactly which user profiles are authorized and also lets

you add or remove user profiles.

To verify a successful update of the master key, use the following procedure, which is similar to the

test scheme in part six of this article series:

1. Create a master key using the CRTMSTK command: CRTMSTK

2. Create a KEK using the Create Key Encrypting Key (CRTKEK) command: CRTKEK

KEYLABEL(CBX_KEK_0001)

3. Create a data encryption key using the Create Data Encryption Key (CRTDTAK) command:

CRTDTAK KEYLABEL(CBX_DTAK_0001) KEKLABEL(CBX_KEK_0001)

4. Use Data File Utility (DFU) or a similar utility to update the CBX1501F control file. Specify the

data key label (in the preceding example, CBX_DTAK_0001) in the KEYLBL field. Specify

whichever number you want to be the initial customer number in the field LSTCUS.

5. Run the command ADDCUSRCD to create a customer record.

6. Run the command RUNQRY *N CBX1502F to verify that the record has been added and the

customer data encrypted.

7. Run the command CHGCUSRCD, specifying the customer number returned in step 5. You

should now be able to see in cleartext the data previously entered.

8. Create a save file and save the key store validation list to that save file:

CRTSAVF FILE(/CBX147S)

SAVOBJ OBJ(CBX147L) LIB() DEV(*SAVF) SAVF(CBX147S)

Page 2 of 6APIs by Example: Cryptographic Services APIs, Part 7

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-service...

9. Change the master key using the CHGMSTK command, allowing it to generate the new key

value by defaulting the command: CHGMSTK

10. Repeat step 7. If you can still see the entered data in cleartext, the master key change was

successful. Remember to decide what to do with the save file from step 8.

Given the requirement, the CHGMSTK command could of course quite easily be cloned to support

the change of other key types. I leave that as an exercise for the reader, however.

In V5R4, IBM has made a new set of Key Management APIs available, which offer great flexibility

and built-in security as well as support advanced key management concepts. There is of course a

price tag in the form of the challenges and complexity related both to understanding the concepts

and to programming the APIs, but for V5R4 and later -- and for the reasons I've mentioned -- I still

recommend and encourage the use of IBM's new offering in this area.

The discussions and code in this article series are intended to give you an adequate general

introduction to the Cryptographic Services APIs as well as useful API examples to help you take your

own next steps in building cryptographic applications. I emphasize that careful and individual

consideration should be given to each specific cryptographic task or project to avoid compromising

the very data security and privacy that you pursue.

I've provided the following cryptographic and key management functions with this and previous

articles in this series:

GenAesKey() -- Generate AES cipher key

GenInzVct() -- Generate initialization vector

GetAlgCtx() -- Get algorithm context

GetMgtAlg() -- Get key management algorithm context

GetKeyCtx() -- Get key context

RmvAlgCtx() -- Remove algorithm context

RmvKeyCtx() -- Remove key context

EncDtaStr() -- Encrypt data string using context tokens

DecCphStr() -- Decrypt cipher string using context tokens

TrnDtaStr() -- Translate data string

ChgKeyEnc() -- Change key encryption

AddKeyEnt() -- Add key entry to key store

ChgKeyEnt() -- Change key store entry

ChkSubKey() -- Check sub key existence

FndNxtKeyE() -- Find next key entry

FndTopKeyE() -- Find top key entry

GetKeyAtr() -- Get key attribute

GetKeySto() -- Get key store

GetMstKeyLb() -- Get master key label

RmvKeyEnt() -- Remove key store entry

VfyKeyEnt() -- Verify key store entry

GetFcnUsg() -- Get function usage

GetMstKeyTk() -- Get master key context token

GetKekTkn() -- Get key encryption key context token

GetDtaKeyTk() -- Get data key context token

RmvParCtxTk() -- Remove parent context tokens

GetCphKey() -- Get cipher key

Page 3 of 6APIs by Example: Cryptographic Services APIs, Part 7

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-service...

NOTE: I recommend reading all parts of this article, and taking into account all recommendations

and warnings stated in each part of this article, before using any or part of the tools provided in this

article series in a production environment.

You can find part one of this article here:

http://www2.systeminetwork.com/article.cfm?id=51236

Part two here:

http://www2.systeminetwork.com/article.cfm?id=51786

Part three here:

http://www2.systeminetwork.com/article.cfm?id=51863

Part four here:

http://www2.systeminetwork.com/article.cfm?id=51962

Part five here:

http://www2.systeminetwork.com/article.cfm?id=52017

Part six here:

http://www2.systeminetwork.com/article.cfm?id=52119

This APIs by Example includes the following source members:

CBX146 -- Cryptographic services service program

CBX146B -- Service program binder source

CBX147 -- Cryptographic key management service program

CBX147B -- Service program binder source

These sources are all revised versions of previously published sources, which have been updated to

support new functions introduced in this article. Please replace these sources in your utility library's

source files. The CBX151M program ensures that the service program gets correctly recompiled.

The CHGMSTK command includes the following sources:

CBX1511 -- Change Master Key - CPP 1

CBX1512 -- Change Master Key - CPP 2

CBX151H -- Change Master Key - help

CBX151V -- Change Master Key - validity checker

CBX151X -- Change Master Key - command

I have included a program that performs all necessary command and object (re)creation:

CBX151M -- Command objects creation

Compilation instructions are also in the source headers, as usual.

V5R4 Key Management APIs:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/catcrypt.htm

This article demonstrates the following APIs:

Page 4 of 6APIs by Example: Cryptographic Services APIs, Part 7

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-service...

Add Validation List Entry (QsyAddValidationLstEntry) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/qsyavle.htm

Change Validation List Entry (QsyChangeValidationLstEntry) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/QSYCVLE.htm

Find First Validation List Entry (QsyFindFirstValidationLstEntry) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/QSYFFVLE.htm

Find Next Validation List Entry (QsyFindNextValidationLstEntry) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/QSYFNVLE.htm

Find Validation List Entry (QsyFindValidationLstEntry) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/QSYFIVLE.htm

Remove Validation List Entry (QsyRemoveValidationLstEntry) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/QSYRVLE.htm

Encrypt data (Qc3EncryptData) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/qc3encdt.htm

Decrypt data (Qc3DecryptData) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/qc3decdt.htm

Translate Data (Qc3TranslateData) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/qc3trndt.htm

Generate Symmetric Key (Qc3GenSymmetricKey) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/qc3gensk.htm

Generate Pseudorandom Numbers (Qc3GenPRNs) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/qc3genprns.htm

Create Algorithm Context (Qc3CreateAlgorithmContext) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/qc3crtax.htm

Create Key Context (Qc3CreateKeyContext) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/qc3crtkx.htm

Destroy Algorithm Context (Qc3DestroyAlgorithmContext) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/qc3desax.htm

Destroy Key Context (Qc3DestroyKeyContext) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/qc3deskx.htm

Send Program Message (QMHSNDPM) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/QMHSNDPM.htm

Move Program Messages (QMHMOVPM) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/qmhmovpm.htm

Resend Escape Message (QMHRSNEM) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/QMHRSNEM.htm

Page 5 of 6APIs by Example: Cryptographic Services APIs, Part 7

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-service...

You can retrieve the source code for this API example from the following link:

http://www.pentontech.com/IBMContent/Documents/article/52224_59_CryptoServices7.zip

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-cryptographic-services-

apis-part-7

Page 6 of 6APIs by Example: Cryptographic Services APIs, Part 7

03-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-service...

