APIs by Example: Tricky Retrieve APIs and How to Process the Receiver Variable Page 1 of 12

ﬂ print | close

APls by Example: Tricky Retrieve APIs and How to Process
the Receiver Variable

System iNetwork Programming Tips Newsletter

Carsten Flensburg
Carsten Flensburg
Thu, 08/26/2010 (All day)

Most retrieve APIs are simple to work with. The data returned is defined by a data structure, and the
information provided is in character or integer format. While often more than one alternative or
accumulating return format is available, each is simple in structure and straightforward to process.
As an example of an API providing alternative return formats, see the Retrieve Job Information
(QUSRJOBI) API, which offers 12 different return formats. As an example of accumulating return
formats, see the Retrieve Member Description (QUSRMBRD) API, which offers three return formats,
the second including the first format, and the third including the second format.

Today, I discuss a couple of return formats that are a bit more challenging to handle. To help me do
that, I've created a Display System Configuration (DSPSYSCFG) command involving the use of many
different retrieve APIs—some of which demonstrate the simple approach of returning data, others a
variety of the more challenging methods. This article's focus is on the latter retrieve API type and
also includes a couple of MI built-ins. In MI built-in terminology, retrieve functionality is referred to
as materialize, and sometimes, when no adequate retrieve API is available, there's a materialize MI
built-in that will fit the bill nicely. More about that in a minute.

The Retrieve System Values (QWCRSVAL) and Retrieve Network Attributes (QWCRNETA) APIs
resemble each other in the way that the return data is requested and how it is returned. Both API
interfaces comply with the documentation below applying to the QWCRSVAL API:

Required Parameter Group:

1 Receiver variable Output Char (*)

2 Length of receiver variable Input Binary (4)

3 Number of system values to retrieve Input Binary (4)

4 System value names Input Array(*) of
Char (10)

5 Error code I/0 Char (*)

Parameter 1 defines the storage available to the API to return the requested information. Parameter 3
specifies the number of system values for which to return data and providing the count of the system
value names specified in parameter 4, a simply array of 10-byte character fields, one element for each
specified system value name. Parameter 5 is the standard API error code data structure. If you are
somewhat familiar with APIs in general, the above parameter list should not cause any headache—at
least not at this point.

http://iprodeveloper.com/print/rpg-programming/apis-example-tricky-retrieve-apis-an... 04-04-2014

APIs by Example: Tricky Retrieve APIs and How to Process the Receiver Variable Page 2 of 12

Calculating the required length of the Receiver variable to be specified as the APIs second parameter
is, however, a bit more involved—here are the words of the manual on that subject—in my formatting
for ease of reading and comprehension:

» To determine the length of the receiver variable, the following calculation should be done.

 For each system value to be returned, get the length of the data returned for the system value
and add 24.

« After adding the lengths for each system value, add 4. This calculation takes into account the
data alignment that needs to be done; therefore, this value is a worst-case estimate.

« If the calculated length is less than what is needed to return all the system value information,
then the value of the Number of system values returned field will match the actual number of
system values returned.

+ The system value information for the system values that won't fit will not be returned. For
example, if a request is made to return information about 1 system value, and that information
will not fit, then the Number of system values returned field will be 0, and there will be no
information returned in the System value information table field.

Now let us continue to the next part, the actual format of the receiver variable. Here's the header
section of that:

Offset
Dec Hex Type Field
0 0 BINARY (4) Number of system values returned
4 4 ARRAY (*) of BINARY (4) Offset to system value
information table
* * CHAR (*) System value information table.
This field

is repeated for each system value
returned.

At the offset(s) specified by the array of four-byte integers, you find the following data structure,
which is repeated for each returned value:

Offset
Dec Hex Type Field

0 0 CHAR (10) System value

10 A CHAR (1) Type of data
11 B CHAR (1) Information status
12 C BINARY (4) Length of data
16 10 CHAR (*) Data

Let's put the above specifications to work and start with the calculation of the required receiver
variable length. Even though I plan to retrieve more than one system value, for simplicity I decided
to retrieve them one at a time. This gives me the following prototype for the GetSysVal() procedure
encapsulating the QWCRSVAL API call:

http://iprodeveloper.com/print/rpg-programming/apis-example-tricky-retrieve-apis-an... 04-04-2014

APIs by Example: Tricky Retrieve APIs and How to Process the Receiver Variable Page 3 of 12

**—— Get system value:
D GetSysVal Pr 4096a Varying
D PxSysVal 10a Const

You specify a system value name, for example QSRLNBR, as input and get the retrieved value back in
the procedure's return value. The system value can have a maximum length of 4096 bytes, which
should safely cover all currently possible system values. Numeric system values are returned as
edited character strings. Below I've defined the QWCRSVAL API input parameters 1, 2, 3, and 4 the
RtnVar data structure and the three ApiPrm data structure subfields, respectively:

D SysVal s 4096a Varying

* x

D ApiPrm Ds Qualified

D RtnVarLen 10i O

D SysValNbr 10i 0 Inz(%Elem(ApiPrm.SysVal))
D SysVal 10a Dim(1)

* x

D RtnVar Ds Qualified

D RtnVarNbr 101 0

D RtnVarOfs 10i 0 Dim(%Elem(ApiPrm.SysVal))
D RtnVarDta 4096a

* x

D SysVallInf Ds Qualified Based(pSysVal)
D SysValKwd 10a

D DtaTyp la

D InfSts la

D Dtalen 101 0

D Dta 4096a

D Dtalnt 101 0 Overlay(Dta)

As mentioned above, I retrieve only one value at a time, but in order to be able to easily adapt my
code in case I at some point decide to retrieve more values in one call, I use the element count of the
system value array together with the size of the return variable in my calculation, which is performed
following the instructions outlined above:

/Free

ApiPrm.RtnVarLen = %Elem(ApiPrm.SysVal) * 24 + %Size(SysVal) +

4;
ApiPrm.SysVal (1) = PxSysVal;
RtvSysVal (RtnVar
: ApiPrm.RtnVarLen
ApiPrm.SysValNbr
ApiPrm.SysVal
: ERRC0100
) ;
/End-Free

Following the API call, the RtnVar data structure defines the number of system values returned as
well as the offset from the beginning of the RtnVar data structure to each of the system value

http://iprodeveloper.com/print/rpg-programming/apis-example-tricky-retrieve-apis-an... 04-04-2014

APIs by Example: Tricky Retrieve APIs and How to Process the Receiver Variable Page 4 of 12

information data structures returned. The system value information data structure is defined by the
above data structure SysVallInf in turn based on the pSysVal pointer. So for each system value
returned, the SysVallnf data structure is mapped to the address of the corresponding location in the
receiver variable:

/Free
For 1Idx =1 to RtnVar.RtnVarNbr;
pSysVal = %$Addr (RtnVar) + RtnVar.RtnVarOfs (Idx);
If SysValInf.SysValKwd = PxSysVal;

Select;
When SysValInf.DtaTyp = 'C';
SysVal = %Subst(SysValInf.Dta: 1: SysValInf.Dtalen);

When SysValInf.DtaTyp = 'B';
SysVal = %Char(SysValInf.Dtalnt);

Other;
SysvVal = NULL;
EndS1;
EndIf;
EndFor;

/End-Free

Based on the data type, the actual system value is then copied to the SysVal return value variable.
This is, of course, the simple way of calling APIs like QWCRSVAL and QWCRNETA. Although this is
how I chose to use these APIs in this example, due to the fact that much of the complexity connected
to calling these APIs is related to their capacity to return multiple return values, I think it makes
sense to also demonstrate how to go about that. Let's say I want to retrieve three system values at a
time. Here's the prototype for the corresponding GetSysVal() procedure:

**—— Get system value:

D GetSysVal Pr 101 0

D PxSysValKwd 10a Const Dim(3)

D PxSysVal 4096a Dim(3) Varying
And here's the adapted version of the GetSysVal() procedure:

D RtnVar Ds Qualified Based (pRtnVar)

D RtnVarNbr 101 O

D RtnVarOfs 10i 0 Dim(%Elem(ApiPrm.SysVal))

D RtnVarDta 4096a

/Free

ApiPrm.RtnVarLen = %Elem(ApiPrm.SysVal) * 24 +

http://iprodeveloper.com/print/rpg-programming/apis-example-tricky-retrieve-apis-an... 04-04-2014

APIs by Example: Tricky Retrieve APIs and How to Process the Receiver Variable Page 5 of 12

$Size(PxSysVal: *All) + 4;
pRtnVar = %Alloc(ApiPrm.RtnVarLen);
ApiPrm.SysVal = PxSysValKwd;

RtvSysVal (RtnVar
: ApiPrm.RtnVarLen
ApiPrm.SysValNbr
ApiPrm.SysVal
: ERRC0100
) ;
If ERRCO0100.BytAvl = *Zero;
For Idx =1 to RtnVar.RtnVarNbr;

pSysVal = pRtnVar + RtnVar.RtnVarOfs (Idx);

Select;
When SysValInf.DtaTyp = 'C';
SysVal = $Subst(SysValInf.Dta: 1: SysValInf.Dtalen);

When SysValInf.DtaTyp = 'B';
SysVal = %Char(SysValInf.Dtalnt);

Other;
SysVal
EndS1;

NULL;

PxSysVal (%Lookup(SysValInf.SysValKwd
PxSysValKwd
)) = SysvVal;

EndFor;
EndIf;

DeAlloc (n) pRtnVar;

If ERRC0100.BytAvl = *Zero;
Return *Zero;

Else;
Return -1;

EndIf;

/End-Free

Since I'm working with a multiple of system values, I'm now allocating the calculated storage to
ensure that the receiver variable will always reflect the actual requirement. This will also make it
easier and less error prone to adapt the GetSysVal() procedure in the future, if required. Apart from
that, the process is pretty much the same as outlined for the simple version. I hope you get the
picture. Along these lines, you could take it one step further and make the GetSysVal() procedure

http://iprodeveloper.com/print/rpg-programming/apis-example-tricky-retrieve-apis-an... 04-04-2014

APIs by Example: Tricky Retrieve APIs and How to Process the Receiver Variable Page 6 of 12

accept and process an arbitrary number of system values, but I'll leave that as an exercise for you.
Should you take up the challenge and need any kind of assistance, please let me know.

Another challenge you can be presented with comes from return data following other conventions in
terms of data type or character set than usually applying on the IBM i in general, and within RPG
development in particular. In the DSPSYSCFG CPP, I employ the Retrieve Partition Information
(dlpar_get_info) API in order to retrieve the partition name of the current partition. This piece of
information is available in format 1 of the two return formats available with the aforementioned API,
and here's how the dlpar_get_info API documentation describes the Partition name subfield of the
format 1 data structure:

Partition name is the name that has been assigned to this partition.
This
field is a null-terminated UTF-8 character string.

Null-terminated character strings and the UTF-8 character set require special attention to process
correctly. Null termination is taken care of by the %STR (Get Null Terminated String) ILE/RPG
built-in function, which converts the null-terminated string into a regular character string containing
the value found up to but not including the null terminator. Converting the character value from
UTF-8 to your job's current Coded Character Set Identifier (CCSID) involves a bit more work.

On the i system, UTF-8 is defined by CCSID 1208. The recommended approach as far as converting
between CCSIDs on the i is concerned, is using the iconv APIs. At the end of this article, I've included
a link to an article explaining the iconv() (Code Conversion) API in great detail. If the conversion task
at hand is as limited—as in this case, in which only one character value needs to be converted—the
Convert a Graphic Character String (QTQCVRT) API provides the exact same conversion facilities as
the iconv APIs because it uses these APIs under the covers. And it is a little simpler to code, since it
requires only one API call as opposed to conversion session oriented iconv APIs' minimum of three
API calls. So for this task, I go with the QTQCVRT API.

If you want to learn more about the iconv() APIs, however, I recommend Scott Klement's article
covering the topic and to which I provide a link at the end of this article. While the QTQCVRT API
still requires some coding efforts to satisfy the 12 parameters required, for ease of use I've created a
procedure that wraps it up and only requires the three crucial input parameters and one return
value:

**-— Convert string by CCSID:

D CvtStrCcsId Pr 1024a Varying
D PxCcsId 101 0 Const
D PxCvtStr 1024a Const
D PxCvtStrLen 101 0 Const

The CvtStrCesID() procedure is designed to handle smaller strings of a size of up to 512 double-byte
characters and 1024 single-byte characters and implicitly converts from the specified CCSID to the
CCSID of the current job. Since the dlpar_get_info API returns the partition name in a null-
terminated UTF-8 string, all that remains now to convert this value into the job CCSID is to strip the
null termination from the string prior to conversion. This is handled in the CvtStrVal() procedure,
which takes the address of a null-terminated string value and converts the string from the CCSID
specified as the second parameter:

http://iprodeveloper.com/print/rpg-programming/apis-example-tricky-retrieve-apis-an... 04-04-2014

APIs by Example: Tricky Retrieve APIs and How to Process the Receiver Variable Page 7 of 12

**-— Convert string value:

D CvtStrVval Pr 1024a Varying
D PxStrVar * Value

D PxCcsId 101 0 Value

So to take the UTF-8 null-terminated string returned by the dlpar_get_info API and convert it to the
job CCSID now becomes the simple task of running the CvtStrVal procedure as it is done in the
GetLparName() procedure from which I've picked the following code snippet:

/Free
RtvPtnInf (PtnInfOl: PTN_STC INF: %$Size(PtnInf0l));
Return CvtStrVal($Addr(PtnInfOl.PtnNam): 1208);

/End-Free

As discussed many times earlier, apart from code readability, it also makes good sense to wrap up the
string and conversion functions as demonstrated above because it allows you to encapsulate the
procedures in a service program and easily reuse the code in case you for some reason want to inline
the functions.

Finally, I'm going to briefly discuss the wealth of system information and functions accessible
through the MI built-ins. To see the complete list of available MI built-ins, please follow the link at
the end of this article. In today's API by Example, I use the Materialize Machine Attributes
(MATMATR) and the Materialize Resource Management Data (MATRMD) MI built-ins. MATMATR
among many other things returns partition information, and MATRMD is capable of delivering
system processor and DB capability thresholds and limits as well as many other system resource
related data.

MI built-ins are basically MI instructions made available to the IBM i ILE compilers through a bound
program access interface and are documented in the MI instructions section of the API manual. To
find out if an MI instruction has an equivalent ILE built-in version, you look up the MI instruction in
the manual and check if there's a Bound program access box describing the built-ins interface at the
beginning of the section documenting the MI instruction in question.

As an example of how the presence of an MI built-in is verified and documented, follow the links
provided below to the MATMATR and MATRMD MI built-ins and note the section at the beginning
of the documentation. Here's what is specified for the MATMATR MI instruction:

Bound program access

Built-in number for MATMATR1 is 92. MATMATR1 (materialization
address
machine attributes : address (of just a selector value))

The MI built-in interface is further explained in the general section of the MI instruction
documentation. Note that MI built-in names are typically preceded by an underscore, below the
resulting prototype for MATMATR1:

http://iprodeveloper.com/print/rpg-programming/apis-example-tricky-retrieve-apis-an... 04-04-2014

APIs by Example: Tricky Retrieve APIs and How to Process the Receiver Variable Page 8 of 12

**—-— Materialize machine attributes:

D MatMatr Pr ExtProc (' MATMATRI1')

D Atr 32767a Options (*VarSize)
D Opt 2a Const

The MATMATR MI instruction supports a large number of different return formats. You specify
which of the formats to return by specifying the appropriate selection value as the instruction's
second parameter, also referred to as operand in the MI terminology, and the adequately formatted
data structure as the first parameter. Here's the data structure and the named constant used as input
to the MATMATR1 MI built-in call, followed by the call itself:

**-— Constants:

D MMTR LPAR INFO c x'01lEQ"

**—— Partition information:

D MMTR _O01EO T Ds Qualified

D BytPrv 101 0 Inz(%Size(MMTR O1EO T))
D BytAvl 101 O

D CurNbrPtn 3u 0

D CurPtnId 3u 0

D PriPtnId 3u 0

D SrvPtnId 3u 0

D FmwLvl 3u 0

D 3a

D LglSrlNbr 10a

D MinPctInt 5u 0 Overlay(MMTR O01EQ T: 87)
D MaxPctInt 5u 0 Overlay(MMTR O01EQ T: 89)
D CurPctInt 5u 0 Overlay(MMTR O1EQ T: 91)
D NbrPhyPrc 5u 0 Overlay(MMTR O1EQ T: 93)
D 2a Overlay(MMTR O01EQ T: 95)
/Free

MatMatr (MMTR _O01EO T: MMTR_LPAR _INFO);

DtlRcd.CurNbrPtn = MMTR O01EQ T.CurNbrPtn;
DtlRcd.FmwLv1l MMTR O1EO T.FmwLvl;
DtlRcd.LglSrlNbr MMTR O1EO T.LglSrlNbr;

/End-Free

In addition to the API manual, it is often helpful to consult the QSYSINC library's C library MIH file's
include members to verify and troubleshoot the MI built-in interfaces. While written in C, they will
often give you an idea about the context, even if you're not that robust in the C language. Each MI
built-in has a member in the MIH file defining the structures and constants employed by that built-
in, and often also includes interesting comments and explanations relating to the use and history of
the built-in. This is also where you can verify the exact name of the MI built-in. The ILE C/C++ MI
Library Reference is a very useful resource too. I've provided a link to a PDF version of this manual
at the end of this article.

http://iprodeveloper.com/print/rpg-programming/apis-example-tricky-retrieve-apis-an... 04-04-2014

APIs by Example: Tricky Retrieve APIs and How to Process the Receiver Variable Page 9 of 12

To sum it all up, you can see examples of the above programming techniques in the DSPSYSCFG
CPP, and I suggest you run the code in a source debugger to see how the pieces fit together. As for the
DSPSYSCFG command itself, here's what the command prompt looks like:

Display System Configuration (DSPSYSCFG)

Type choices, press Enter.

Reset statistics *NO *NO, *YES

Output+ . . O . L. * *, *PRINT

Specify whether the system status statistics and elapsed time are reset to zero prior to retrieval of the
system configuration information and also whether the command output should go to a display panel
or a printed list. Here's an example of what the command would look like if you decided to display
the system configuration information without resetting the system status statistics and elapsed time:

DSPSYSCFG RESET (*NO)
OUTPUT (*)

The resulting display panel's first page would have the following appearance:

Display System Configuration
WYNDHAMW
22-08-10

12:25:31

System name WYNDHAMW

Serial number 4321CBA

Type and model 9406-525

Processor feature 7792

Processor group P10

Partition name 43-21CBA

Partition ID 1

Logical serial number 4321CBA1

http://iprodeveloper.com/print/rpg-programming/apis-example-tricky-retrieve-apis-an... 04-04-2014

APIs by Example: Tricky Retrieve APIs and How to Process the Receiver Variable ~ Page 10 of 12

Processor share attribute *DEDICATED

Number of partitions : 1

Firmware level : 16

0OS release : V5R4MO

CUM package level and status . : 10117 Installed
System state *AVAILABLE

TCP status *ACTIVE

More. ..
F3=Exit F5=Refresh
information

Fl2=Cancel F19=Display partition

F20=Work with PTF groups F21=Display software resources
F24=More keys

In addition to the system configuration information displayed, there are shortcuts in the form of
function keys F19, F20, and F21 providing access to the Display Partition Information
(DSPPTNINF), Work with PTF Groups (WRKPTFGRP), and Display Software Resources
(DSPSFWRSC) commands, respectively. If it turns out that your system knows nothing about the
DSPPTNINF command, don't worry; it'll be part of an upcoming article in the APIs by Example
series. To see the DSPSYSCFG command's second page of configuration information, press the Page
Down button:

Display System Configuration

WYNDHAMW
22-08-10

12:25:31
Main storage size 15975968
Total aux storage size 986031
System ASP size 986031
System ASP used 84,9857
System ASP threshold 90,0
Number of processors 2

http://iprodeveloper.com/print/rpg-programming/apis-example-tricky-retrieve-apis-an...

04-04-2014

APIs by Example: Tricky Retrieve APIs and How to Process the Receiver Variable

IPL type

Bottom
F3=Exit
information
F20=Work with PTF groups
F24=More keys

CPU percent used

DB capability used

IPL date and time

Key lock position

DB capability threshold

DB capability limit

F5=Refresh

Processor interactive threshold:

Processor interactive limit

Fl2=Cancel

F21=Display software resources

100,0

100,0

22,2

100,0

100,0

14,8

18-08-2010

B

Normal

05:11:25

F19=Display partition

Page 11 of 12

The display panel and all fields shown are explained in the cursor-sensitive help text associated with
the display. Point the cursor to the area or field of interest and press F1 to access the help text

provided.

This APIs by Example includes the following sources:

CBX218

CBX218E
CBX218H
CBX218P
CBX218X

CBX218M

RPGLE
RPGLE

PNLGRP --
PNLGRP --

CMD

CLP

Display
Display
Display
Display
Display

Display

System
System
System
System
System

System

Configuration
Configuration
Configuration
Configuration
Configuration

Configuration

CPP

UIM General Exit
Help

Panel Group

Build command

To create all these objects, compile and run the CBX218M program, following the instructions in the
source header. You'll also find compilation instructions in the respective source headers.

Related article:

Converting Data Between CCSIDs (June 2006, article ID 52786)

This article demonstrates the following APIs and MI Built-ins:

Retrieve System Values (QWCRSVAL) API

http://iprodeveloper.com/print/rpg-programming/apis-example-tricky-retrieve-apis-an... 04-04-2014

APIs by Example: Tricky Retrieve APIs and How to Process the Receiver Variable ~ Page 12 of 12

Retrieve Network Attributes (QWCRNETA) API

Retrieve System Status (QWCRSSTS) API

Retrieve Product Information (QSZRTVPR) API

List PTF Groups (QpzListPtfGroups) API

Retrieve TCP/IP Attributes (QtocRtvTCPA) API

Retrieve Partition Information (dlpar get info) API

Materialize Machine Attributes (MATMATR) MI Built-in
Materialize Resource Management Data (MATRMD) MI Built-in
i5/OS Machine Interface

ILE C/C++ MI Library Reference (PDF)

Convert a Graphic Character Strin TQCVRT) API

iconv() Code Conversion API

Retrieve the source code for this API example.

Source URL: http://iprodeveloper.com /rpg-programming/apis-example-tricky-retrieve-apis-and-

how-process-receiver-variable

http://iprodeveloper.com/print/rpg-programming/apis-example-tricky-retrieve-apis-an... 04-04-2014

