
print | close

APIs by Example: Analyzing Logical Files Using the
QDBRTVFD File API

System iNetwork Programming Tips Newsletter

Carsten Flensburg

Carsten Flensburg

Thu, 05/27/2010 (All day)

The Retrieve Database File Description (QDBRTVFD) API is by far one of the most challenging and

discouraging APIs that ever left IBM's drawing board alive. But because it is also an extremely

powerful API, I keep coming back to it whenever database files are involved in the equation. There's

no detail in the complex and nested structure that makes up a file object that is out of reach for the

QDBRTVFD API. Whether physical files, logical files in various flavors, any kind of file field

information, key information—you name it, it's all there—buried somewhere in the many file

description layers and structures exposed by this API.

Today's API by Example uses the QDBRTVFD API to catch and eliminate the dangers and problems

potentially caused by misplaced logical files. While there can be valid reasons for a logical file to be

located in a library different from a physical file it is based on, it can also sometimes be traced back

to a mistake or misunderstanding on the part of the developer creating the logical file. Should that

situation arise, the Analyze Logical File Integrity (ANZLFITG) command will help you quickly

identify and correct the problem.

If you don't have a completely waterproof separation of your production and development

environment—whether physically or by means of resource security—as well as a thoroughly verified

procedure for moving objects between one and the other, there's a risk that you at times for whatever

reason might end up with logical files in test libraries pointing to a physical file in a production

library or vice versa. Subsequently running production programs might perform updates in partial

against test data, or likewise, testing programs under development in turn will update your

production data. Encountering such situations will in a worst-case scenario keep you occupied for

quite a while before you have reestablished the database integrity.

Another issue originating from logical files located in libraries different from their physical files'

libraries relates to save and restore dependencies. At releases earlier than 6.1, it's impossible to

restore a logical file if a based-on physical file doesn't exist in the library in which it was located when

the logical file was saved. So if the logical file library is restored before the physical file library, the

restore will fail. Given, for example, a disaster recovery situation, failing to comply with this

restriction can add significantly to an already tense atmosphere.

I've added a link below to the information about the new restore deferred object option enabling you

to restore logical files associated with currently nonexisting physical files at release 6.1 and later.

Whatever the potential problem is, the ANZLFITG command will help you detect it promptly or, in

case logical and physical file library differences are by design, document the issue well ahead of

situations in which such information is vital in order to maintain the control and initiative, and

provide the foundation for timely planning of such endeavors. Before we look at how to perform a

Page 1 of 8APIs by Example: Analyzing Logical Files Using the QDBRTVFD File API

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-analyzing-logical-files...

logical file analysis tracking potential culprits, however, let's have a look at the rules determining

where the based-on physical files are found when creating logical files.

If you run the Create Logical File (CRTLF) file command and the physical files are specified

unqualified on the PFILE DDS-keyword, the library list is used to identify the physical file. So before

running or submitting the CRTLF command, due diligence is essential, as far as controlling and

verifying the library list is concerned. So if you create a logical file in library XYZ, even though the

based-on physical file exists in library XYZ, there's no guarantee that this file will be used. If the

physical file also exists in a library ahead of XYZ in the library list of the job compiling the logical file,

for example library ABC, the physical file in library ABC will be used.

As for the Create Duplicate Object (CRTDUPOBJ) command, the rules are a bit more complex. When

you run the CRTDUPOBJ command for a logical file two rules apply, depending on whether the

logical file being copied is associated with a physical file residing in the same library as the original

logical file.

1. If the logical file being copied resides in the same library as the physical file it is based on, a

duplicate of the based-on physical file must at the time of the copy exist in the target library.

Following the completion of the copy command, the new logical file will be based on the

physical file located in the target library. The CRTDUPOBJ command this way enforces that

the new logical file remains associated with a physical file residing in a common library.

2. If, however, the logical file being copied is based on a physical file in a different library than

itself, the new logical file will be based on the same physical file as the logical file being copied.

Not being specifically acquainted with this rule might cause someone to anticipate another

behavior, so this situation is the one most likely to generate a potential future problem, if

caution is not exercised.

For unqualified table names in SQL CREATE VIEW statements, the following rules apply to

determine which table is actually being referenced:

1. If the unqualified name corresponds to one or more common table expression table-identifiers

specified in the fullselect, the name identifies the common table expression that is in the

innermost scope.

2. Otherwise, the name identifies a persistent table, a temporary table, or a view that is present in

the default schema. The default schema for system naming is *LIBL, for SQL naming USER,

and can be set using the SET SCHEMA statement.

These are the main rules to observe. Please refer to the respective manuals for more details. I've

included relevant links at the end of this article. Before I go through the process of retrieving file

information, let's have a look at the ANZLFITG command prompt to decide exactly what information

is needed for the command processing program (CPP) to do its job:

 Analyze Logical File Integrity (ANZLFITG)

 Type choices, press Enter.

Page 2 of 8APIs by Example: Analyzing Logical Files Using the QDBRTVFD File API

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-analyzing-logical-files...

 Logical file *ALL Name, generic*,

*ALL

 Library *LIBL Name, *LIBL,

*CURLIB...

 Include:

 Join logical files *YES *YES, *NO

 Multi format logical files . . *YES *YES, *NO

 IBM libraries *YES *YES, *NO

 Violation types *ALL *ALL, *PFLIB,

*LFLIB

 Sort order *FILE *FILE, *LIB

 Output * *, *PRINT

The list of logical file candidates to be examined is defined by the command's main parameter,

allowing you to specify a generic name or the special value *ALL as the file name, and a number of

library special values as well as a library name to qualify the specified file name as required. The CPP

uses the Open List of Objects (QGYOLOBJ) API to retrieve this list and then for each of the logical

files returned in the object list, the QDBRTVFD API to extract the file information necessary to

perform the evaluation of the INZLFITG command's selection criteria as well as the file details to be

shown on the command's list panel.

The Include parameter allows you to specify three list filter criteria, which effectively let you decide

whether to include the following types of logical files: Join logical files, multiformat logical as well as

logical files residing in an IBM library, the latter being defined by an object creator user profile of

*IBM. This can be quite easily accessed using the Retrieve Object Description (QUSROBJD) API

against the logical file library object. The two other criteria I'll get back to in a moment.

The Violation type parameter specifies the type of logical file integrity violation to include in the list.

Type *LFLIB means that a logical file is based on a physical file located in another library than the

logical file; however the physical file does not exist in the logical file library. This type of violation is

less error indicative than type *PFLIB, which covers the situation in which a logical file points to a

physical file in another library than the logical file, while a physical file does exist in the logical file

library. This is of course a strong indication that something probably is not in accordance with the

intention of the programmer who created the logical file. You have the option of including only one of

the violation types, or both.

To sum it all up, I will need to extract and evaluate the following information in order to produce the

desired logical file list:

• The logical file library

• The physical file library for each based-on physical file

• The logical file type (join logical, multiformat logical)

• The logical file creator user profile

Page 3 of 8APIs by Example: Analyzing Logical Files Using the QDBRTVFD File API

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-analyzing-logical-files...

• Whether physical file exists in logical file library

The logical file library is straightforward; I'll get that as part of the object information data structure

returned by the QGYOLOBJ API for each object listed. For the based-on physical file library, I'll have

to resort to the QDBRTVFD API. Another alternative to obtain this information would be the

Retrieve Member Description (QUSRMBRD) API, but I've on previous occasions found it to return

incomplete information as far as the file record format name is concerned which I'll need for the list

panel, so I'll stick to good old QDBRTVFD.

As discussed in earlier articles involving the QDBRTVFD API and to which I've included links at the

end of this article, the API returns one of four groups of definition or information templates related

to a file object:

• FILD0100 File definition template

• FILD0200 Format definition template

• FILD0300 Key field information template

• FILD0400 Trigger information template

For the purpose at hand, the FILD0100 File definition template is the appropriate choice. In the

QDBRTVFD API documentation, there's diagram describing the FILD0100 definition template's

many structures and their respective correlations. As you will note, the place to start is at the top

with the File Definition Header structure Qdb_qdbfh (FDT). This structure contains file-level

attributes as well as the offsets to the next layer of detail information structures. To find out which

offsets I'm going to use, I'll need to identify which substructures hold the information that I'm after.

Because the aforementioned structure diagram doesn't immediately identify where the based-on

physical file information is located, it takes a little research to discover that these details are found in

the File Scope Array (Qdb_Qdbfb) structure. In the header of the Qbd_Qdbfb structure description

section, there's also a reference to where you can locate the offset to this structure. As it turns out, it's

the offset field Qdbfos in the FDT header section, Qdb_Qdbfh. The offset is calculated from the

beginning of the FDT header section.

Since I use pointer arithmetic to resolve the substructures, it's very fast and simple to populate the

Qdb_Qdbfb structure. I base the Qdb_Qdbfb structure on a space pointer, and set the value of this

pointer to the address of the beginning of the FDT header section, and then add the offset found in

the Qdbfos field, as in the following example in which the pQdb_Qdbfh pointer contains the address

of the beginning of the Qdb_Qdbfh structure:

 pQdb_Qdbfb = pQdb_Qdbfh + Qdb_Qdbfh.Qdbfos;

Following the execution of the above statement, pointer pQdb_Qdbfb now points to the first byte of

information in the File Scope Array returned by the QDBRTVFD API. The array part of the structure

name indicates that there's a multiple of structures, for logical files one for each based-on physical

file. You get to the next array entry by adding the size of the Qdb_Qdbfb structure to the

pQdb_Qdbfb pointer and in order to process all array entries you repeat to do so for as many times

as defined by the Qdbflbnum field also found in the FDT header section and defining the number of

based-on physical file record formats for a logical file:

 For Idx = 1 To Qdb_Qdbfh.Qdbflbnum;

Page 4 of 8APIs by Example: Analyzing Logical Files Using the QDBRTVFD File API

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-analyzing-logical-files...

 

 // Perform file scope array entry processing here

 If Idx

The information I need is found in the Qdbfbf field containing the

physical file name, the Qdbfbfl file holding the physical file library

name, and the Qdbft field defining the record format name. Here's an

excerpt of the Qdb_Qdbfb structure definition in the CPP:

 **-- File scope array:

 D Qdb_Qdbfb Ds Qualified Based(pQdb_Qdbfb)

 D Reserved_48 48a

 D Qdbfbf_q 20a

 D Qdbfbf 10a Overlay(Qdbfbf_q: 1)

 D Qdbfbfl 10a Overlay(Qdbfbf_q: 11)

 D Qdbft 10a

 D Reserved_49 37a

 D Qdbfbgky 5i 0

 D Reserved_50 2a

 D Qdbfblky 5i 0

 ...

Given the mentioned Qdbflbnum field defining the number of based-on physical file record formats,

which allows me to identify multiformat logical files, at this point it only remains for me to establish

whether a logical file is also a join logical file, in order to provide for the ANZLFITG command's two

related include parameters. A quick search of the QDBRTVFD API documentation locates the Logical

File Specific Attributes (Qdb_Qdbflogl) structure, which holds a Join logical file indicator.

To locate the Qdb_Qdbflogl structure, the documentation points to the Qdbflfof field in the FDT

header section, Qdb_Qdbfh. The offset is as usual calculated from the beginning of the FDT header

section. The only problem is that there's no Qdbflfof field to be found in the Qdb_Qdbfh structure, or

elsewhere for that matter. Scanning for the Qdb_Qdbflogl structure name, however, quickly reveals

that the offset field is named Qdblfof instead. So prior to accessing the data in the Qdb_Qdbflogl

structure, I set its based-on pointer to the address found by pointer arithmetic along the lines

specified above:

Page 5 of 8APIs by Example: Analyzing Logical Files Using the QDBRTVFD File API

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-analyzing-logical-files...

 pQdb_Qdbflogl = pQdb_Qdbfh + Qdb_Qdbfh.Qdblfof;

The Join logical file indicator is present in the form of a bit field, which makes it a little more

convoluted to access. According to the documentation, the indicator is located as the third leftmost

bit in the Qdb_Qdbflogl structure's Qlfa field. I use the tstbts (Test bit in string) C library function to

set the Qdbfjoin integer to either zero or one:

 Qdbfjoin = tstbts(%Addr(Qdb_Qdbflogl.Qlfa): TYP_JOIN);

The tstbts() function counts the leftmost bit as zero, the next as one, and so on, so to check for the bit

value of the third leftmost bit you need to specify 2 as the second argument for the tstbts() function. I

use the named constant TYP_JOIN defined as the digit 2 to help me document this significance of

the digit. If you'd rather stick to RPG/IV built-in functions, you can achieve the same result using the

%BitAnd() Bitwise AND Operation, specifying a bit-mask with the desired bit set on as the function

argument:

 D TYP_JOIN c x'20'

 If %BitAnd(Qdb_Qdbflogl.Qlfa: TYP_JOIN) x'00';

 Qdbfjoin = 1;

 Else;

 Qdbfjoin = 0;

 EndIf;

Anyway, at this point I have all the main building blocks that I need in order to put together the

ANZLFITG CPP. Despite my somewhat intimidating introduction to the QDBRTVFD API in the

opening section of this article, getting at the information needed for this utility was easy. Once you

get used to the ideas and conventions practiced by the QDBRTVFD API, any type of database file

information is within your reach. You can follow the program flow and sequence of events by

running the CPP in your favorite source debugger and see how the pieces (hopefully) fit together. I

tried running the following command on my system:

 ANZLFITG FILE(*ALL/*ALL)

 INCLUDE(*YES *YES *YES)

 VIOLTYPE(*ALL)

 ORDER(*LIB)

 OUTPUT(*)

Listing and processing all files on a system can take a while, so be careful where and when you run

the ANZLFITG command against a large number of files. Once the command completed, the list

panel below was displayed:

 Analyze Logical File Integrity

 WYNDHAMW

 21-05-10

 14:38:08

 List order . . . : *LIB Position to . . .

Page 6 of 8APIs by Example: Analyzing Logical Files Using the QDBRTVFD File API

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-analyzing-logical-files...

 Type options, press Enter.

 2=Move 3=Copy 4=Delete 5=Display 6=Data base relations

7=Rename

 8=Work with LF 9=Work with PF

 Logical Physical

 Opt File Library File Library Format

 Violation

 CHECK_CSTS QSYS2 QADBFCST QSYS CHECK00001

 *LFLIB

 LOCATIONS QSYS2 QADBXRDBD QSYS LOCATIONS

*LFLIB

 REF_CST1 QSYS2 QADBFCST QSYS REFER00001

 *LFLIB

 SCHEMATA QSYS2 QADBIFLD QSYS SCHEMATA

 *LFLIB

 SYSCHKCST QSYS2 QADBFCST QSYS SYSCHKCST

*LFLIB

 SYSCOLUMNS QSYS2 QADBIFLD QSYS SYSCOLUMNS

 *LFLIB

 SYSCOLUMNS QSYS2 QADBXSFLD QSYS SYSCOLUMNS

 *LFLIB

 SYSCST QSYS2 QADBFCST QSYS SYSCST

 *LFLIB

 More...

 Parameters or command

 ===>

 F3=Exit F4=Prompt F5=Refresh F9=Retrieve F10=Edit

library list

 F11=Display LF F12=Cancel F17=Top F18=Bottom

As usual, the various areas of the list panel and columns are explained in detail in the help text panel

group accompanying this utility. Point your cursor to the location of interest and press function key

F1 to display the help text for that area or column. Note that if you've installed the Work with

Database Files (WRKDBF) command previously published in this column (see link to article below)

option 8 and 9 will run this command. Otherwise the Work with File (WRKF) command will be

executed for the list options in question.

This APIs by Example includes the following sources:

CBX215 RPGLE Analyze Logical File Integrity - CPP

CBX215H PNLGRP Analyze Logical File Integrity - Help

CBX215P PNLGRP Analyze Logical File Integrity - Panel Group

Page 7 of 8APIs by Example: Analyzing Logical Files Using the QDBRTVFD File API

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-analyzing-logical-files...

CBX215V RPGLE Analyze Logical File Integrity - VCP

CBX215X CMD Analyze Logical File Integrity

CBX215M CLP Analyze Logical File Integrity - Build command

To create all the ANZLFITG command objects, compile and run the CBX215M program, following

the instructions in the source header. You can also find compilation instructions in the respective

source headers.

This APIs by Example article is based on a suggestion submitted by Peter Kemp in Australia. Peter

also tested the ANZLFITG command and was involved in its final design. Many thanks to Peter for

his help and input! If you have any ideas or suggestions for me to cover in future APIs by Example

articles, please forward these to me at flensburg@novasol.dk.

IBM Documentation:

Create Logical File (CRTLF) command

Create Duplicate Object (CRTDUPOBJ) command

Create View

Set Schema

Using DFRID to Allow Restoring Logical Files before Physical Files

Restoring logical files

Restore Deferred Objects (RSTDFROBJ) command

Remove Defer ID (RMVDFRID) command

Related articles:

APIs by Example: Working with Database Files, Fields and More

APIs by Example: Displaying and Locating a Physical File's Access Paths

APIs by Example: Print File Field Description

This article demonstrates the following File APIs:

Retrieve Database File Description (QDBRTVFD) API

File APIs

Database and File APIs

Retrieve the source code for this API example.

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-analyzing-logical-files-

using-qdbrtvfd-file-api

Page 8 of 8APIs by Example: Analyzing Logical Files Using the QDBRTVFD File API

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-analyzing-logical-files...

