
print | close

APIs by Example: The Save to Application API and Exit
Program

System iNetwork Programming Tips Newsletter

Carsten Flensburg

Carsten Flensburg

Thu, 05/22/2008 (All day)

At first glance, the Save to Application (QaneSava) API looks complicated, and its purpose might

seem unclear. The QaneSava API lets you intercept the save file records generated by one of up to

eight different save commands or APIs. Instead of directing the save records to a save file, the

QaneSava API intercepts and routes the save records to an API-parameter-defined, user-written exit

program. In a moment, I discuss how this is done. In addition, getting direct and immediate access to

the save file records is useful for at least a couple of reasons, which I outline in this article.

Using the QaneSava API, you could transfer the save records to another system or site as the save

process unfolds, instead of having to wait until the save process has completed. Another option

would be to encrypt the save records before storing them on a medium of your choice. The QaneSava

API of course has a counterpart in the QaneRsta (Restore from Application) API, which lets you

reverse the process, bringing the entire save/restore process within reach of your programming

skills. Today, I focus on the save perspective, and to demonstrate the QaneSava API and the related

Save to Application Exit Program, I created the Save Object to Stream File (SAVOBJSTMF)

command.

As I just mentioned, other options for transferring or encrypting a save file already exist. One of the

more straightforward options is the Copy (CPY) command. After a save file is created and the save

process is completed, you could, for example, use the following command to copy the save file

SAVE001 in library QGPL to the QOpenSys file system in the IFS on your machine:

 CPY OBJ('/QSYS.LIB/QGPL.LIB/SAVE001.FILE')

 TODIR('/QOpenSys')

 DTAFMT(*BINARY)

This command would produce a stream file in the QOpenSys directory:

 Work with Object Links

 Directory : /qopensys

 Type options, press Enter.

 2=Edit 3=Copy 4=Remove 5=Display 7=Rename 8=Display

Page 1 of 6APIs by Example: The Save to Application API and Exit Program

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-save-application-api-a...

attributes

 11=Change current directory ...

 Opt Object link Type Attribute Text

 . DIR

 .. DIR

 SAVE001.FILE STMF SAVF

From this point on, you can transfer and process the stream file as you require, as long as you can

reverse the process when you need to copy the stream file back to its save file. To achieve the final

step, run a CPY command like this one:

 CPY OBJ('/QOpenSys/SAVE001.FILE')

 TOOBJ('/QSYS.LIB/QGPL.LIB/TEST001.FILE')

 DTAFMT(*BINARY)

If you'd rather pursue the API and exit program route, however, you'll be interested to know that the

details involved in choosing that approach are herein. The QaneSava API has the following

parameter list:

 1 Qualified user space name Input Char(20)

 2 User space format name Input Char(8)

 3 Status format name Input Char(8)

 4 Status information Output Char(*)

 5 Length of status information Input Binary(4)

 6 Error code I/O Char(*)

The first parameter specifies the name and library of a user space that must contain all the control

information for the save operation. This information is formatted as a data structure named

SVRS0100 and includes such information as the save command or API to be used to generate the

save records, the save command parameters or save API parameter key structure, and a section

called Application data, available to support communication between the program calling the

QaneSava API and the exit program called during the save process.

The name and library of the exit program to be called is also defined by the SVRS0100 data

structure. Here's the manual's description of the SVRS0100 data structure in its entirety:

Offset Type Field

Dec Hex

 0 0 BINARY(4) Length of structure

 4 4 BINARY(4) Offset to save command parameters

 8 8 BINARY(4) Length of save command parameters

12 C BINARY(4) Offset to application data

16 10 BINARY(4) Length of application data

20 14 BINARY(4) Save command type

Page 2 of 6APIs by Example: The Save to Application API and Exit Program

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-save-application-api-a...

24 18 CHAR(10) Exit program name

34 22 CHAR(10) Exit program library

44 2C CHAR(8) Target release

 CHAR(*) Save command parameters

 CHAR(*) Application data

The save commands and APIs supported by the QaneSava API are defined by the following list,

which shows all available options at release V5R4 for the Save command type subfield in the

preceding structure:

1. Save (SAV) command

2. Save Object (SAVOBJ) command

3. Save Document Library Object (SAVDLO) command

4. Save Library (SAVLIB) command

5. Save Changed Object (SAVCHGOBJ) command

6. Save Object (QsrSave) API

7. Save Object List (QSRSAVO) API

8. Save System Information (SAVSYSINF) command

Note that the SVRS0100 parameter structure also contains the name and library of the exit program

to be called during the save process. The name of the parameter structure is submitted as the second

API parameter.

The QanaSave API's third, fourth, and fifth parameters define the name of the status data structure,

the status data structure itself, and the length of the status data structure, respectively. The status

data structure is named SRST0100 and provides a communication area between the QaneSave API

and its caller and contains the following information at release V5R4:

Offset Type Field

Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Transfer time

12 C BINARY(4) Transfer block size

16 10 BINARY(4) Transfer block multiplier

20 14 BINARY(4) Last block size

24 18 CHAR(10) User space library used

34 22 CHAR(2) Reserved

36 24 BINARY(4) Decimal transfer time

The final and sixth parameter is the standard API error code data structure, which I assume that you

are already familiar with. If you're not, I urge you to read Scott Klement's article titled "A Beginner's

Guide to APIs". This article offers a great introduction not only to the API error code data structure

but to APIs in general.

The QaneSava API has a lot of restrictions, constraints, and subtleties to consider when you code this

API. For example, if the save command is submitted by a prestart job and not in the job that called

the API, some save command parameters are not supported for various reasons, and objects saved by

the QaneSave API can only be restored using the QaneRsta API. All these issues are thoroughly

described in the API documentation, so I'll quit copying the documentation for now and refer you to

the link below, following which you'll find the IBM online V5R4 version of the QaneSava API

documentation.

Page 3 of 6APIs by Example: The Save to Application API and Exit Program

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-save-application-api-a...

Be sure to also check out the code included with this APIs by Example to see how the pieces fit

together, and feel free to send me any questions that remain following your reading exercise.

So back to the second component in today's utility: The Save to Application Exit Program. As I noted

earlier, you register your exit program in the SVRS0100 data structure, and following a successful

call to the QaneSava program, this exit program gets called in any of the following four operation

types:

1. Start of save process. At this point, the exit program must prepare for the save record transfer,

as for example open a stream file.

2. Transfer of a block of save records. The exit program receives a block of save records as well as

the length of the data block. The exit program can then store the received data as for example

write or append the data to a stream file. This step repeats until all save records are processed.

3. End of save process. The exit program at this point must terminate the process of storing the

save records, and for example, close the stream file.

4. Abnormal end of save process. If anything goes wrong in the cause of the save process, the exit

program is called one final time to allow it to perform cleanup and termination activities, such

as deleting the save records stream file.

The exit program has the following required parameter group:

 1 Operation type Input Binary(4)

 2 Operation status Output Binary(4)

 3 Save data Input PTR(SPP)

 4 Length of save data Input Binary(4)

 5 Save bytes read Output Binary(4)

 6 Qualified user space name Input Char(20)

 7 User space format name Input Char(8)

The Operation type parameter specifies which of the preceding four events caused the exit program

to call, and the exit program returns the outcome of the processing performed by the exit program in

the Operation status parameter, which in turn causes the save process to either continue or

terminate.

The third parameter is a space pointer to a block of save records. This parameter is of course passed

only for operation type 2. Together with the Length of save data parameter, these two parameters

enable you to process the save data buffer safely. The sixth parameter is the qualified name of the

user space specified as input to the QaneSava API, and it thereby enables the exit program to share

and exchange information with the API caller via this user space. The format of the data in the user

space is declared by the seventh parameter.

Summing up all the above information leads finally to the SAVOBJSTMF command, which has the

following command prompt appearance:

 Save Object to Stream File (SAVOBJSTMF)

 Type choices, press Enter.

Page 4 of 6APIs by Example: The Save to Application API and Exit Program

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-save-application-api-a...

 Objects Name, generic*,

*ALL

 + for more values

 Library Name

 Object types *ALL

 + for more values

 Stream file

 Additional Parameters

 Target release *CURRENT *CURRENT, *PRV

 Update history *YES *YES, *NO

 Save active *NO *NO, *LIB,

*SYNCLIB, *SYSDFN

 Save active wait time:

 Object locks 120 0-99999, *NOMAX

 Pending record changes *LOCKWAIT 0-99999,

*LOCKWAIT...

 Other pending changes *LOCKWAIT 0-99999, *LOCKWAIT,

*NOMAX

 Save active message queue . . . *NONE Name, *NONE

 Library *LIBL Name, *LIBL,

*CURLIB

 Output *NONE *NONE, *PRINT

The Stream file parameter specifies an existing path as well as a stream file created as part of the

save processing. The stream file will contain all save records after the save is complete. As always, a

help text panel group is included with the command to explain all details and parameters. Apart from

the Stream file parameter, all other parameters work the same way as you’re used to with the Save

Object (SAVOBJ) command.

Please note that if you specify the OUTPUT(*PRINT) keyword for the SAVOBJSTMF command, you

can locate the produced spooled file using the command:

Page 5 of 6APIs by Example: The Save to Application API and Exit Program

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-save-application-api-a...

 WRKSPLF SELECT(*CURRENT *ALL *ALL *ALL *ALL QPSAVOBJ)

Because the save process runs in a separate prestart job, the spooled file is created under the

QPRTJOB special job name and is therefore not owned by the job running the SAVOBJSTMF

command, eventually making it a bit harder to locate.

In the next installment of APIs by example, I show you how to reverse the process and restore objects

using the Restore from Application (QaneRsta) API and the associated exit program.

This APIs by Example includes the following sources:

CBX193H -- PNLGRP -- Save Object to Stream File - Help

CBX193X -- CMD -- Save Object to Stream File

CBX1931 -- RPGLE -- Save Object to Stream File - CPP

CBX1931V -- RPGLE -- Save Object to Stream File - VCP

CBX1932 -- RPGLE -- Save to Application - Exit program

CBX193M -- CLP -- Save Object to Stream File - build command

To create all these objects, compile and run CBX193M, following the instructions in the source

header. As always, compilation instructions are in the respective source headers.

This article demonstrates the following Backup and Recovery API and Exit Program:

Save to Application (QaneSava) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/QaneSava.htm

Save to Application Exit Program:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/XANESAVA.htm

Backup and Recovery APIs V5R4:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/back1.htm

You can retrieve the source code for this API example from:

http://www.pentontech.com/IBMContent/Documents/article/56711_616_SavObjStmf.zip.

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-save-application-api-

and-exit-program

Page 6 of 6APIs by Example: The Save to Application API and Exit Program

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-save-application-api-a...

