4/6/2014 APIs by Example: Keeping Track of Your Exports

B print | close

APIls by Example: Keeping Track of Your Exports

iPro Developer
Carsten Flensburg
Thu, 02/21/2013 - 6:00am

Find modules that export procedures with the WRKPGMEXP command

Click here to download the code bundle. Sometimes, it's handy to be able to quickly locate the module or
service program that exports a specific procedure, or a specific
ata item, for that matter. You might, for example, need a
particular routine you wrote a while agobut nolonger recall in which service program it's located. Or perhaps
you want towrite a new procedure but must first ensure that a procedure by that name doesn't already exist.
Because I've often encountered such situations, I decided to write the Work with Program Export (WRKPGMEXP)
command. (For instructions on how to create WRKPGMEXP, see the "How to Compile" box below.)

Toreport code errors, email iPro Developer

How WRKPGMEXP Works

The WRKPGMEXP command lists all programs and service programs containing modules that export a specified
symbol name, which defines either a procedure or data item. For WRKPGMEXP to retrieve the exported sy mbol
names, the modules bound into the programs or service programs must still exist as objects in the library from
which they were bound. By using binder language, you can prevent the export of a symbol from a service
program, even if the symbol is exported from the module used to create that service program. Therefore, the
command supports an option that lets you retrieve symbol names from the service program instead.

A program object doesn't list the procedures and data items exported from the modules bound into the program
because the program itself doesn't export symbols, but a service program does. A service program exports all
symbols defined with the EXPORT keyword in the modules indicated in the Create Service Program
(CRTSRVPGM) command if you stipulate *ALL for the command's export (EXPORT) parameter. Alternatively,
specifying EXPORT(*SRCFILE) will export only those symbols declared in the binder language and defined in the
source member indicated for the CRTSRVPGM command's export source file (SRCFILE) and export source
member (SRCMBR) parameters.

The Required Parameters

To perform the heavy-duty tasks of the WRKPGMEXP command, Iuse three Program and CL Command APIs:
List Service Program Information (QBNLSPGM), List Module Information (QBNLMODI), and List ILE Program
Information (QBNLPGMI). All three APIs have the same interface, which displaysthe four required parameters
in Figure 1.

1 Qualified user space name Input Char (20)
2 Format name Input Char (8)
3 Qualified object name Input Char (20)
4 Error Code I/0 Char (*)

Default Public Authority: *USE

Figure 1: The APIs'required parameter group

The Qualified user space name parameter defines the user space where the APIwill return the requested module,
program, or service program information. The Format name parameter defines the format of the returned data.
Figure 2 shows the types of information that the three APIs currently support.

Module Program Service program
Format: Detail: Format: Detail: Format: Detail:
MODL0100 *EXPORT

MODL0200 *IMPORT

http://iprodevel oper.com/print/application-development/apis-example-keeping - track-your-exports 1/5

4/6/2014 APIs by Example: Keeping Track of Your Exports
PGML0100 *MODULE SPGL0100 *MODULE
PGML0110 *MODULE extended SPGL0110 *MODULE extended
PGML0200 *SRVPGM SPGL0200 *SRVPGM
PGML0300 *ACTGRPEXP SPGL0300 *ACTGRPEXP
PGML0400 *ACTGRPIMP SPGL0400 *ACTGRPIMP
MODL0300 *PROCLIST
MODL0400 *REFSYSOBJ
MODL0500 *COPYRIGHT PGML0500 *COPYRIGHT SPGL0500 *COPYRIGHT
SPGL0600 *PROCEXP
SPGL0610 *PROCEXP extended
SPGL0700 *DTAEXP
SPGL0800 *SIGNATURE

Figure 2: Formats defined for module, program, and service program

Asyou can see, the corresponding Display Module (DSPMOD), Display Program (DSPPGM), and Display Service
Program (DSPSRVPGM) commands' detail (DETAIL) option defines each format. For more about the various
types of information, look up the APIdocumentation or the DETAIL parameter's help text for each of the CL
commands.

The third API parameter in Figure 1 —Qualified object name—defines the object in question as a module,
program, or service program name. The final APIparameter, Error Code, is the standard API error data
structure.

Creating the Work-With List
Tobuild the program and service program work-with list, follow these steps:

1. Call the Open List of Objects (QGYOLOBJ) APItolist all programs and service programs identified by the
WRKPGMEXP command's REFPGM parameter.

2. For each program found, list all modules bound into the program or service program using the
QBNLPGMI APL For each service program found, use the QBNLSPGM API, and:

a. Ifyou specified the service program option SRVPGMOPT(*MODULE), list the modules bound into
the service program.

b. If you used SRVPGMOPT(*SRVPGM), list the service program exports and match each export
symbol name and ty pe against the symbol name and ty pe indicated as the WRKPGMEXP
command's EXPORT parameter.

3. Perform the following verification and investigation process for each bound module:

a. Call the Retrieve Object Description (QUSROBJD) APIto check whether the module object exists.

b. If the module object does exist, use the Retrieve Module Information (QBNRMODI) APIto verify the
module source level against the corresponding data recorded into the program object.

c. If step 3b passes verification, use the QBNLMODI APItoretrieve and process the module export
symbol list, and match each export symbol name and type against the symbol name and ty pe
specified as the WRKPGMEXP command's EXPORT parameter.

4. Ifstep 3c produces a match, the WRKPGMEXP command's work-with list will provide program and
module information. Alternatively, if step 2b runs and produces a match, the work-with list will include
service program information.

Note that if y ou specify the value *VFYMODREF for the WRKPGMEXP command's EXPORT parameter, the
work-with list will include only modules that failed either test in step 2a or 2b and will ignore the SRVPGMOPT
parameter. Figure 3 shows the WRKPGMEXP command's prompt panel.

Work with Program Export (WRKPGMEXP)
Type choices, press Enter.

Exported symbol name

Export symbol type *PROC *PROC, *DATAITEM
Export program Name, generic*, *ALL
Library« « . o . . *LIBL Name, *LIBL, *CURLIB...
Export program type *ANY *ANY, *PGM, *SRVPGM
Service program option *MODULE *MODULE, *SRVPGM

http://iprodevel oper.com/print/application-development/apis-example-keeping - track-your-exports

4/6/2014 APIs by Example: Keeping Track of Your Exports

Sort order *OBJLIB *OBJLIB, *TYPOBJ, *LIBOBJ..
OQutput * *, *PRINT

Figure 3: Work-with Program Export (WRKPGMEXP) command prom pt

Here, you specify asthe primary parameter the name of the procedure or data item for which you want to find
all program references—and stipulate the symbol ty pe as the secondary parameter. Please note that the symbol
name is case-sensitive, as are export symbol names. Next, enter the generic name and library qualification of
the programs and service programs whose modules y ou want tolist and check for unresolved exports. Using the
special name value *ALL and one of the special values available for library qualification, you can potentially
list and examine numerous programs and service programs. This technique can lead to extensive use of sy stem
resources, soyou should narrow the selection range as much as possible.

You alsohave the option of specifying only one program type toinclude in the array of programs to examine, as
well ashow service programs are processed; the symbol list is resolved either from the modules bound into the
service program or from the service program itself. As mentioned earlier, a different outcome might result if
you use binder language to create the service program export list, or if the modules bound into the service
program no longer exist. Alternatively, you can specify a variety of sort orders for the produced list. Finally,
you can choose to print the program list instead of displaying a work-with panel. The online help text offers
more details about the command and its parameters.

When Irun the following command on my system:

WRKPGMEXP EXPORT (GETCTRCOD)
SYMTYP (*PROC)
EXPPGM (QGPL/WEB*)
EXPPGMTYP (*ANY)
SRVPGMOPT (*MODULE)
ORDER (*OBJLIB)
OUTPUT (*)

I'm presented with the work-with panel shown in Figure 4.

Work with Program Export WYNDHAMW
29-11-12 11:20:21
Export symbol : GETCTRCOD
Symbol type : *PROC

Type options, press Enter.
2=Update 4=Delete program 5=Display program 6=Display module
7=Work with PDM 8=Program reference 9=Module reference

Program Module Module

Opt Name Library Type Name Library Status
WEB421 QGPL *PGM WEB421 QGPL *EXPSYMEND
WEB422 QOGPL *PGM WEB421 QOGPL *EXPSYMFND
WEB423 QGPL *PGM WEB421 QGPL *EXPSYMFND
WEB530 QGPL *PGM WEB530 QGPL *EXPSYMEND
WEB543 QGPL *PGM WEB643 QGPL *EXPSYMEND
WEB650 QGPL *PGM WEB650 QOGPL *EXPSYMFND

More. ..

Parameters or command

===>

F3=Exit F4=Prompt F5=Refresh F9=Retrieve Fll=Display program text

Fl2=Cancel F17=Top F18=Bottom F22=Display entire export symbol

Figure 4: Work-with Program Export list panel

Here, the F11 key lets you toggle between the various ty pes of program and module information exposed by the
list panel. Using the list options, you can immediately execute an array of program and service program
http://iprodevel oper.com/print/application-development/apis-example-keeping - track-your-exports 3/5

4/6/2014 APIs by Example: Keeping Track of Your Exports

commands against the found objects. The list of commands includes UPDPGM/UPDSRVPGM,
DLTPGM/DLTSRVPGM, DSPPGM/DSPSRVPGM, DSPMOD, WRKMBRPDM, and DSPPGMREF. As always, online
help text that explains the list panel, columns, options, and function keys is available.

To check the result of using the WRKPGMEXP command's SRVPGMOPT(*SRVPGM) option, you can run the
following command:

WRKPGMEXP EXPORT (' EXCP_MSGID'")
SYMTYP (*DATAITEM)
EXPPGM (QSYS/*ALL)
EXPPGMTYP (*SRVPGM)
SRVPGMOPT (*SRVPGM)

Afterward, you should see a service program named QC2UTIL1 in library QSYS. If the QC2UTIL1 service
program has been replaced by one or more PTFs on your system, you might alsolocate service programs with
names beginning with QPZA*.

In previous APIs by Example articles, I've published utilities that let you locate programs or service programs
that import a specific procedure or data item, as well as programs or service programs that reference a
particular service program. You'll find links to the articles presenting the Work with Program I'mport
(WRKPGMIMP) and the Work with Service Program References (WRKSPGREF) commands in the "Find Out More"
box below.

How to Compile

Below are instructions on how to create the Work with Program Export command. The code download associated
with this article includes the following sources:

CBX259—RPGLE: Work with Program Export—CPP
CBX259E—RPGLE: Work with Program Export—UIM Exit
CBX259H—PNLGRP: Work with Program Export—Help
CBX259P—PNLGRP: Work with Program Export—Panel Group
CBX259V—RPGLE: Work with Program Export—VCP
CBX259X—CMD: Work with Program Export
CBX259M—CLP: Work with Program Export—Build Command

To create all of these command objects, compile and run the CBX259M CL program, following the instructions
in the source header. You'll also find compilation instructions in the respective source headers of the individual
sources.

Find Out More

IBM i ILE Concepts 7.1

Moving to Integrated Language Environment for RPG IV

IBMi 7.1 Information Center documentation

List ILE Program Information (QBNLPGMI) API

List Module Information (QBNLMODI) API

List Service Program Information (QBNLSPGM) API

Retrieve Module Information (QBNRMODI) API

http://iprodevel oper.com/print/application-development/apis-example-keeping - track-your-exports 4/5

4/6/2014 APIs by Example: Keeping Track of Your Exports
Retrieve Program Information (QCLRPGMI) API

Articles at iProDeveloper.com

"APIs by Example: Identifving and Working with Service Program References"

"APIs by Example: Locating and Working with Module Imports"

"Binder Language and the Signature Debate"

"Meat of the Matter: In RPG, Subprocedures Are Useful"

"RPG Name Spaces"—forum discussion

Source URL: http://iprodev eloper.com /application-development/apis-example-keeping-track-y our-exports

http://iprodevel oper.com/print/application-development/apis-example-keeping - track-your-exports 5/5

