Using PEX APIs to Trace Application-Specific Transaction Performance Page 1 of 7

ﬂ print | close

Using PEX APIs to Trace Application-Specific Transaction
Performance

System iINEWS Maqgazine

Carsten Flensburg Keith Zblewski Keith Zblewski
Carsten Flensburg

Thu, 12/01/2005 (All day)

Those who develop or support 5250-based transaction
applications running on the iSeries have many tools at their
disposal for managing the performance of those applications. System commands such as
WRKSYSSTS (Work with System Status) and WRKACTJOB (Work with Active Jobs) provide
valuable information about key performance metrics such as transaction response time and
transaction throughput.

Click here to download code

Beyond the core operating system utilities, the reports in the Performance Tools licensed product or
the Performance Management (PM) iSeries service offering let you track transaction performance
metrics on a historical basis. When performance problems arise in an application of this kind, trace
facilities invoked with the STRPFRTRC (Start Performance Trace) command can analyze individual
transactions and identify causes of performance bottlenecks, such as a lock on a database record or
program.

But what happens when a 5250-based application is changed or replaced with new technologies that
use Web servers, application servers, and database technologies such as ODBC? The ability to
analyze transaction performance becomes more complicated because tools such as WRKSYSSTS and
the commonly used Performance Tools reports do not provide a measure of transaction performance
for the non-5250 environment.

Fortunately, iSeries tools are available that can help you understand the mystery of application
performance in this new world. It starts with a very powerful tool called the Performance Explorer
(PEX). PEX has been available in OS/400 for many years, but few iSeries professionals have used it
to help analyze application performance.

You can run PEX in several modes, with each mode providing a different view of performance or a
different level of detail. The mode that you use to measure application transaction performance is
called trace mode. Trace mode provides a way to trace various activities called events that occur
when applications are running or system resources are being used. One special type of trace event is
called a user-defined transaction event. Collecting user-defined transaction events with PEX is one
way to measure the transaction performance of an application when a transaction is processed by
multiple server jobs and/or threads.

For each transaction event, PEX captures the response time, CPU time, database and non-database
I/0 activity, and the seize/lock activity. This data can help a performance analyst understand how
each transaction is performing and whether transactions are impeded by lock contention between
multiple users of this application or other applications.

http://iprodeveloper.com/print/rpg-programming/using-pex-apis-trace-application-spe... 04-04-2014

Using PEX APIs to Trace Application-Specific Transaction Performance Page 2 of 7

Before you can take advantage of the capability provided by PEX transaction events, you must follow
two steps:

1. Define the application transactions that you want to track and measure.

2. Place transaction API calls in the application for the transactions you define in Step 1.
Defining Application Transactions

A transaction is any unit of work in your application that you want to track and measure. You first
define what a transaction is and then place transaction API calls in the application based on the
transactions that you define. For example, if you're writing a financial application, you might define a
transaction to be the piece of code that queries an account balance. Another transaction might be the
code that updates a bank account.

However, what if the bank account update requires a query of the account balance? Do you define
two separate transactions or one transaction that includes both operations? The answer is whatever
you define it to be. It depends on how much granularity you want in the measurement of the
operations in your application. If you query the account balance for other reasons (in addition to
updating the bank account), you might want to identify the query as a separate transaction. You
decide. The transaction APIs will measure the transactions that you define.

The transactions you choose to define will obviously be different from application to application. For
example, your retail application might retrieve daily sales data from its stores every night. In this
case, you could define a "retrieve sales data" transaction in which the retrieval from each store is
tracked and measured as a separate transaction. Likewise, an application that obtains price quotes
from several suppliers could track and measure the time and resources used to obtain each price
quote. The definition of a transaction is limited only by the way you execute work in your application.

Placing Transaction API Calls in the Application

After you define the server transactions you want to measure in your application, you place API calls
at the beginning and end of each transaction in your code. The response time, CPU time, I/O activity,
and seize/lock activity are calculated between each start and end transaction pair.

The Start Transaction API, which is named QYPE STRT (for OPM programs) or
gypeStartTransaction (for ILE programs), is placed at the beginning of a transaction. The End
Transaction API, which is named QYPEENDT or qypeEndTransaction, is placed at the end of a
transaction. If the processing for a single transaction occurs in multiple threads or programs, you can
use the Log Transaction API to keep track of a transaction as it moves from thread to thread or
program to program. The Log Transaction API is named QYPELOGT or qypeLogTransaction. The
details of the transaction APIs are described in the iSeries Information Center at
ublib.boulder.ibm.com/infocenter/iseries/vsr3/index.jsp?lang=en. Just click

Programming|APIs| APIs by Category|Performance Management|PEX APIs.

Each API contains a parameter called Application Trace Data, which allows a programmer to capture
any pertinent information that will help a performance analyst learn something important about the
transaction. In the performance collection example shown later in this article, we used the
Application Trace Data parameter to capture the user ID of the user performing the transaction and
the customer ID accessed by the transaction. This data can be valuable when analyzing the cause of a
performance bottleneck.

http://iprodeveloper.com/print/rpg-programming/using-pex-apis-trace-application-spe... 04-04-2014

Using PEX APIs to Trace Application-Specific Transaction Performance Page 3 of 7

For example, you might find that transactions executed by a specific user or for specific customers
have poor performance. Capturing this data in the transaction may help you identify who or what is
causing poor performance. Other valuable information to include in this parameter might be the
name of the file or the record number that is accessed by the transaction.

Code Example

To ease PEX API deployment and simplify the API call interface, we have wrapped up the PEX APIs
in service program PEXo001. (All of the code accompanying this article is available at
iSeriesNetwork.com/code.) In the service program, all the PEX APIs are prototyped and made
available through subprocedures that you can easily call from any program(s) you want to run a
transaction performance analysis against.

The service program also offers a transaction ID counter facility. The transaction ID is a sequential
number that uniquely identifies each set of Start Transaction, Log Transaction, and End Transaction
API calls within a given PEX session. The transaction ID counter function involves three procedures:

« Initialize Transaction ID, which takes a counter ID (identifies one counter sequence) and
returns a pointer to the counter storage

» Get Transaction ID, which takes the pointer and returns the next transaction ID (using a
couple of MI functions to ensure that only one process at a time is allowed to reference the
counter storage process)

« Terminate Transaction ID, which releases the resources used as counter storage (at this point,
the transaction ID must be reinitialized to be used again; to keep transaction IDs unique
throughout a PEX session, do not terminate the transaction ID until you no longer need to
collect any more transaction data for that session)

See the PEX001 source header for instructions on how to create the service program.

Figure 1 and Figure 2 show the code snippets that should go into the program(s) you want to include
in your analysis. The application trace data and performance counter parameters are provided only
as an example of how these parameters could be used.

The prototypes for the PEX001 service program are stored in the copybook (Figure 1). Putting the
prototypes in a copybook lets you quickly include them in the programs where they are needed,
without having to code them over and over again.

Figure 2 shows an example of how you would use the PEX API functions to collect performance data.
To make the PEX functions in the PEX001 service program available to your program, specify the
binding directory and copybook instructions (at A). The transaction counter, which is needed to
generate unique transaction IDs for the performance data collection, is initialized at B.

At C, the beginning of the transaction to be measured is recorded by calling the StrTrnPex
subprocedure, and at the point where the end of transaction is encountered, the EndTrnPex
subprocedure is called (at D). The PEX facility will now have registered all the relevant performance
data related to that specific transaction. When the performance data collection is complete, this
information can be extracted into a number of data files and used to generate performance analysis
reports, as we will show in a moment.

Collecting Transaction Performance Data

Once the transaction API calls are placed in the application, you can collect the transaction
performance metrics while the application is running by following these steps:

http://iprodeveloper.com/print/rpg-programming/using-pex-apis-trace-application-spe... 04-04-2014

Using PEX APIs to Trace Application-Specific Transaction Performance Page 4 of 7

1. Use the ADDPEXDFN (Add PEX Definition) command to define the transaction data that
should be collected by PEX.

2. Use the STRPEX command to start PEX, which enables the collection of the transaction data
that was defined in Step 1.

3. Run your application.

4. Use the ENDPEX command to end the collection of transaction metrics by PEX, and write the
transaction data to the PEX database.

As we mentioned earlier, you can run PEX in many different modes at different levels of detail. As a
result, there are many ways to use the ADDPEXDFN command. Because our purpose is to collect
application transaction data, the ADDPEXDFN command should be called as follows:

ADDPEXDFN DFN (APPTXN)
TYPE (*TRACE) JOB ((*ALL))
TRCTYPE (*SLTEVT) SLTEVT (*YES)
OSEVT ((*USRTNS))

The DFN parameter contains the name of the definition that will be used on the STRPEX command
to identify which type of data should be collected. The OSEVT parameter indicates that user
(application) transaction data (*USRTNS) will be collected. The JOB parameter with a value of *ALL
indicates that transaction data will be collected for all jobs running on the system. If your application
contains a predefined set of jobs, you can specify individual job names instead of *ALL.

Next, start the collection of performance data by calling the STRPEX command as follows:

STRPEX SSNID (APPTXNI)
OPTION (*NEW) DFN (APPTXN)

The SSNID parameter is a value that uniquely identifies this session of data collection. The DFN
parameter is the same as the DFN parameter on the ADDPEXDFN command.

After PEX is started, transaction data will be collected for any application that contains the PEX API
calls. When the PEX session is ended, transaction data is stored in four database files named
QAYPEMIUSR, QAYPETASKI, QAYPETIDX, and QAYPERUNL.

The transaction performance data is not stored in the database files until the ENDPEX command is
run as follows:

ENDPEX SSNID (APPTXN1) OPTION (*END)
DTAOPT (*LIB) DTALIB (TXNLIB)
DTAMBR (*SSNID) RPLDTA (*YES)
TEXT ('My Transaction Data')

In this example, the transaction data is stored in library TXNLIB, specified by the DTALIB
parameter. The DTAMBR parameter specifies the database file member name for the data. In this

http://iprodeveloper.com/print/rpg-programming/using-pex-apis-trace-application-spe... 04-04-2014

Using PEX APIs to Trace Application-Specific Transaction Performance Page 5 of 7

case, the member name is the same as the value on the SSNID parameter, which is APPTXN1. The
SSNID parameter must be the same as the SSNID parameter entered on the STRPEX command.

Note: When you run PEX for the first time, it will create all the database files for every mode of PEX
that could possibly be used. This results in around 50 files being created, even though only four of
the files are used for application transaction events.

Although you could technically collect transaction data continuously, a common way to use this
facility is to collect the data for one or two hours during a peak period of the day. In this case, you
will need to delay the call of the ENDPEX command until the application has run for the period of
time that you determine in advance.

After transaction data has been collected, you can process and analyze the data with SQL queries. As
we mentioned earlier, PEX produces four database files that are important when you're analyzing
transaction data, but most of the performance information is found in the following two files:

+ QAYPEMIUSR. This file contains the raw transaction event data. Figure 3 and Figure 4 show
the format of this data.

« QAYPETIDX. This file contains the timestamp, CPU number, and TDE (task ID) number for
each event or transaction that was produced during this data collection.

Files QAYPEMIUSR and QAYPETIDX are joined by the record number field, which is named
QRECN in both files. The files must be joined in this way when you're performing the SQL query
needed to analyze the transaction data.

Defining SQL Aliases

Before you run the query, define an SQL ALIAS for each member you need to access, because SQL
does not directly support multimember files. Another technique is to use the OVRDBF CL command.
Here are the SQL ALIAS definitions needed for this analysis:

CREATE ALIAS MIUSR FOR
TXNLIB/QAYPEMIUSR (APPTXN1)

CREATE ALIAS TIDX FOR
TXNLIB/QAYPETIDX (APPTXNL1)

Note: You need to have the library name used here (TXNLIB) in your library list for the query shown
in the next section.

Running the Query

Now you're ready to run the query. From your SQL session, build your query by including the fields
you want to examine. In Figure 5, a subset of the fields in the raw transaction file QAYPEMIUSR is
included along with the timestamp from file QAYPETIDX. The timestamp is used to determine the
overall response time of a transaction. The query results are ordered by the timestamp and
transaction ID.

You might want to query on more fields than appear in Figure 5, such as CPU time, the lock counters,
and the thread information if a job contains multiple threads. However, in this example, we will
focus on response time, database lock activity, and the application-specific trace data, which includes
the user ID that performed the transaction and the customer ID. Figure 6 shows the results of a
query run after data was captured for two applications that contain the PEX transaction APIs.

http://iprodeveloper.com/print/rpg-programming/using-pex-apis-trace-application-spe... 04-04-2014

Using PEX APIs to Trace Application-Specific Transaction Performance Page 6 of 7

The first application has an application ID of FinanceApp. This application analyzes the
creditworthiness of a customer by investigating payment history, credit limit, and other financial
criteria. The second application has an application ID of OrderEntryApp. This application checks
current inventory and fills the order for a customer if the inventory is available.

In Figure 6, transactions 9896 and 9900 are the longest running transactions. Both transactions take
approximately 0.28 seconds, while most other transactions shown here take 0.10 seconds or less.
You can determine this by looking at the timestamps for the start and end of each transaction.

The third record in the file represents the start time for transaction 9896 (because the TXNTYPE
field is 1, which means the Start Transaction API was called). The fourth record in the file represents
the end time for transaction 9896 (because the TXNTYPE field is 2, which means the End
Transaction API was called). Computing the difference between the timestamp at the start of the
transaction and the timestamp at the end of the transaction will give you the total response time for
this transaction.

So what could have caused transactions 9896 and 9900 to take much longer than the other
transactions? Notice that the transactions performed 677 and 674 asynchronous database reads.
Again, this is computed by taking the difference of the counters at the start and the end of the
transaction. Notice that all other transactions performed fewer than 200 reads.

You can see additional database counters selected on the query statement by using F20 to scroll to
the right (Figure 7). Notice that the transactions identified above also performed the most
asynchronous database writes and several synchronous database writes, which typically means that
the data needed for the transaction was not in main memory, so the system needed to read database
records into memory from disk. All of these discoveries, identified by querying the PEX transaction
data, help explain why certain transactions took longer than others.

In this case, the application developer will want to investigate the application that performed the
long-running transactions to determine whether improvements can be made to the application itself
or to the data being accessed by these transactions. Notice that column 1 in Figure 6 identifies that
both transactions were run by the application identified as FinanceApp.

One Last Tip

Querying each transaction might be more detail than you need in some cases. You might first want to
start by obtaining information about average transaction response time and throughput. Then, if you
discover the response time or throughput rate is poor, you can use the techniques shown earlier to
investigate individual transaction performance.

To obtain average response time and throughput statistics, you need to run Collection Services and
query the file QAPMUSRTNS. You can configure Collection Services to collect performance data at
regular intervals between 15 seconds and one hour.

The format of file QAPMUSRTNS is described in the iSeries Information Center at Systems
management|Performance|Applications for Performance Management|Performance database
files| Data files containing time interval data| QAPMUSRTNS. You can also find more information
about Collection Services at Systems management|Performance|Applications for Performance
Management|Collection Services.

Improve Application Efficiency

http://iprodeveloper.com/print/rpg-programming/using-pex-apis-trace-application-spe... 04-04-2014

Using PEX APIs to Trace Application-Specific Transaction Performance Page 7 of 7

Measuring the transaction performance for non-5250 applications can be a complex task, but the
new PEX Transaction APIs in i5/0S make this task easier for applications running on an iSeries
server. If you use the APIs in your applications, you will be able to capture transaction throughput,
response time, CPU consumption, and other important performance statistics. Having this data at
your fingertips lets you do a better job of planning capacity and identifying performance bottlenecks,
which can result in more efficient applications and satisfied users.

Keith Zblewski is a performance analyst and software architect in the POWER Systems
Performance organization at IBM in Rochester, Minnesota. He joined IBM in 1987 and has been
involved with various aspects of iSeries and eServer performance since 1997. Keith currently leads
the development of sizing tools for i5/0S, AIX, and Linux and provides technical guidance to IBM
and Business Partner sales and support teams on iSeries performance and capacity planning.

Carsten Flensburg has been an iSeries programmer since 1992. He currently works as an iSeries
programiming team leader for a European vacation rental company called Novasol, which is a part
of the U.S.—based Cendant Corporation. Carsten lives in Copenhagen, Denmark, with his wife,
Dorthe, and his two children, Julian and Emilie.

Source URL: http://iprodeveloper.com/rpg-programming/using-pex-apis-trace-application-
specific-transaction-performance

http://iprodeveloper.com/print/rpg-programming/using-pex-apis-trace-application-spe... 04-04-2014

