APIs by Example: Zip and Unzip Files with the New 7.1 Zip API Support Page 1 of 8

ﬂ print | close

APls by Example: Zip and Unzip Files with the New 7.1 Zip
API Support

System iNetwork Programming Tips Newsletter

Carsten Flensburg
Carsten Flensburg
Thu, 12/08/2011 - 2:00am

In a recent IBM announcement, IBM revealed that zip and unzip file support had been developed
and PTF'd for release 7.1. This support comes in the form of two ILE APIs, QzipZip and QzipUnzip,

respectively. At the end of this article, I've included information about the 7.1 PTFs delivering the zip
support APIs. One PTF installs the QZIPUTIL service program containing the aforementioned APIs,
and another PTF copies the associated header files to the QSYSINC library. The zip support was part
of a major refresh of IBM i 7.1, and I suggest you follow the above link to familiarize yourself with all
the details, which might include other enhancements of interest.

After a quick study of the zip APIs' documentation and header files, I knew that it would be quite
useful to create a couple of CL. command interfaces to make the zip and unzip services immediately
available, wherever and whenever the common requirement of zipping or unzipping a file or
directory on IBM i was encountered. I therefore decided to write the Zip File (ZIPF) and Unzip File
(UNZIPF) CL commands. The CPPs also offer RPG/IV examples of how to code the two
corresponding APIs, should you want to integrate zip or unzip functionality directly in your
programs. Today's APIs by Example brings you the details.

The IBM announcement says that the QzipZip and QzipUnzip APIs are available with the most recent
IBM HTTP SERVER FOR I group PTF, which at the time of writing amounts to level 10. However, it
quickly became apparent that this is not the case. I expect the APIs will be included in the next
update of the HTTP group PTF, although I do not know that for sure, so we'll have to wait and see.
Doing a search on IBM's APAR and PTF database, however, allowed me to identify the two PTFs
including the APIs as well as the associated QSYSINC library header files, respectively, and as
mentioned you'll find links to the PTF cover letters below.

Although the QzipZip and QzipUnzip APIs were just recently released, the IBM i 7.1 Information
Center's API section already includes the APT documentation for these APIs. Surprisingly however,
the online QzipZip and QzipUnzip API documentation specifies only the APIs parameter lists in C
notation, as the following excerpt from the APTI manual's UNIX-Type API section shows:

Compress Files and Directories (QzipZip) API
#include

void QzipZip (
Qlg Path Name T * fileToCompress,
Qlg Path Name T * compressedFileName,
char * formatName,
char * zipOptions,
char * errorStruct)

http://iprodeveloper.com/print/rpg-programming/apis-example-zip-and-unzip-files-ne... 03-04-2014

APIs by Example: Zip and Unzip Files with the New 7.1 Zip API Support Page 2 of 8

Decompress an archive file (QzipUnzip) API

#include

void QzipUnzip (
Qlg Path Name T * compressedFileName,
Qlg Path Name T * dirToPlaceDecompFiles,
char * formatName,
char * unzipOptions,
char * errorStruct)

As it turned out, the new QZIPUTIL RPG/IV header file in library QSYSINC actually also includes
the RPG/IV prototypes for the two APIs, so the missing parameter list definition is not critical for
anyone unfamiliar with C. Should you at some point be challenged with deciphering a C prototype for
which IBM did not do the job for you, you will, however, find plenty of help in the document
Converting from C prototypes to RPG prototypes, written by Barbara Morris of IBM and published
on Scott Klement's website. A link to the document is included below.

Anyway, if you're more comfortable with IBM's usual API parameter list notation, here's my take on
how the corresponding Zip and Unzip API documentation would look in the IBM Information Center
API manual, given the above C prototypes:

Compress Files and Directories (QzipZip) API

Required Parameter Group:

1 File to zip Input Char (*)
2 Zip file name Input Char (*)
3 Zip Options format name Input Char (8)
4 Zip options Input Char (*)
5 Error code I/0 Char (*)
Decompress an archive file (QzipUnzip) API

Required Parameter Group:

1 Zip file name Input Char (*)
2 Unzip to directory Input Char (*)
3 Unzip options format name Input Char (8)
4 Unzip options Input Char (*)
5 Error code I/0 Char (*)

In the following paragraphs, I briefly walk you through the parameters for both APIs, which are
relatively few in number and pretty straightforward. Both APIs' first and second parameter is a
Qlg_Path_Name_t structure, the first one pointing to the object to be processed, and the second one
pointing to where the outcome of the process should be placed. In addition to allowing you to specify
a path name, the Qlg_Path_Name_ t structure also provides for a set of parameters defining all
relevant information about how the receiving API should interpret the path name string in order to
arrive at the correct path name:

Qlg Path Name t structure

http://iprodeveloper.com/print/rpg-programming/apis-example-zip-and-unzip-files-ne... 03-04-2014

APIs by Example: Zip and Unzip Files with the New 7.1 Zip API Support

Page 3 of 8

Offset
Dec Hex Type RPG/IV Field
0 0 BINARY (4) 101 O CCSID
4 4 CHAR (2) 2a Country or region ID
6 o CHAR (3) 3a Language ID
9 9 CHAR (3) 3a Reserved
12 C BINARY (4) 101 O Path type indicator
16 10 BINARY (4) 101 O Length of path name
20 14 CHAR (2) 2a Path name delimiter character
22 16 CHAR (10) 10a Reserved
32 26 CHAR (*) 5000a Path name (or pointer to path

name)

You must specify a Coded Character Set Identifier (CCSID), a country or region ID, a language ID, as
well as the path type being either a character string or a pointer to a character string, the length of
path name, and the path name delimiter character. All this information is used by the API in
question to ensure that the specified path name is addressed correctly. Luckily, most of the
parameters in the Qlg_Path_Name_t structure take a default value pointing to the corresponding
job attribute currently in effect. As for the path name delimiter character, note that the Zip APIs
accept only a forward slash (/).

The following data structure definition shows how the above Qlg_Path_Name_ t specification is
translated into RPG/IV. The aforementioned default values are specified for all the parameters
supporting this feature:

**-— Global constants:

D CUR CCSID c 0

D CUR _CTRID C x'0000"

D CUR_LNGID C x'000000"
D CHR DIM1 C 0

**—- Qlg Path Name t API path:
D Qlg Path Name t...

D Ds Qualified Align
D CcsId 10i 0 Inz(CUR CCSID)
D CtrId 2a Inz (CUR _CTRID)
D LngId 3a Inz (CUR_LNGID)
D 3a Inz (*Allx'00")
D PthTypI 10i 0 Inz(CHR DLM1)
D PthNamLen 101 0

D PthNamDlm 2a Inz('/ ")

D 10a Inz (*Allx'00")
D PthNam 1024a

D pPthNam * Overlay(PthNam)

In a previous article, I discussed the Qlg_Path_Name_t structure in more detail, and I include a link
to this article below. As for the Zip and Unzip APIs' parameter lists in particular, the zip operation
expects you to employ the Qlg_Path_Name_t structure to specify a path to the file or directory that
you want to zip as the first parameter, and the name of the zip file archive to store the zipped object
(s) in as the second parameter. Likewise, for the unzip operation, you specify the zip file name to
unzip as the first parameter, and the directory in which you want the unzipped object(s) to be placed
as the second parameter.

http://iprodeveloper.com/print/rpg-programming/apis-example-zip-and-unzip-files-ne... 03-04-2014

APIs by Example: Zip and Unzip Files with the New 7.1 Zip API Support Page 4 of 8

Both APIs also support a number of options to apply for the zip operation being performed. These
options are passed in another structure, whose format name must be specified as API parameter
number three, and the actual option structure as parameter four. The Zip API option format
ZIP00100 has the following definition:

Zip options structure ZIP00100

Offset Type RPG/IV Field
Dec Hex
0 0 CHAR (10) 10a Verbose option
10 A CHAR (6) 6a Subtree option
16 10 CHAR (512) 512a Comment
528 210 BINARY (4) 10u O Length of the comment
UNSIGNED

The Verbose option specifies whether verbose messages are to be printed to the standard out during
the compression process. The system itself does not set up stdin, stdout, stderr descriptors, and it is
the responsibility of the user of this API to set the descriptors when using this option.

The Subtree option specifies whether directory subtrees are included or not when creating an archive
file. And the Comment option allows you to add a comment in the job CCSID to the newly created
archive file. The corresponding unzip options structure UNZIP100 should be defined as follows:

Unzip options structure UNZIP100

Offset Type RPG/IV Field

Dec Hex
0 0 CHAR (10) 10a Verbose option
10 A CHAR (6) oa Replace option

The Replace option specifies whether an existing file needs to replaced or not if a file by the same
name already exists in the target path. This option applies only to file objects; directory names are
ignored. The verbose option is also supported for the unzip operation. As noted above, the verbose
option relies on a programming effort provided by the caller of the API. I've included a link below to
an article written by Scott Klement discussing the setup involved in accessing the stdin, stdout, and
stderr data streams, albeit in a slightly different scenario, in case you'd like to investigate this option
further.

Regarding the option structure format names themselves, it's worth noting that the regular API
standard pattern of four letters followed by four digits is not being observed. Why this is the case I
don't know, but I did wonder why IBM has not enforced the common API standard, especially due to
the ambiguity in the ZIPoo100 format name—is the fourth byte an 'O’ or a '0'?

The fifth and final API parameter is, however, the good old standard API error structure, which has
been discussed many times earlier, so I don't go into more detail on this topic here. I've included
IBM's prototypes defining the Zip API interfaces below. Following installation of the PTFs referenced
at the end of this article, you should find the RPG/IV prototypes as well as parameter structure
definitions in the QZIPUTIL header file in QRPGLESRC in the system include library QSYSINC. The

prototypes are included below:

http://iprodeveloper.com/print/rpg-programming/apis-example-zip-and-unzip-files-ne... 03-04-2014

APIs by Example: Zip and Unzip Files with the New 7.1 Zip API Support Page 5 of 8

D QzipZip PR EXTPROC
(*CWIDEN: 'QzipZip"')

D filesToZip LIKEDS
(0Qlg Path Name T) CONST

D zipFileName LIKEDS
(Qlg Path Name T) CONST

D formatName 8A CONST

D zipOptions LIKEDS
(Qzip Zip Options T)

D CONST

D errorStruct 1000A OPTIONS (*VARSIZE)

D QzipUnzip PR EXTPROC
(*CWIDEN: 'QzipUnzip"')

D zipFileName LIKEDS

(Qlg Path Name T) CONST
D wunzipTargetPath...

D LTIKEDS
(Qlg Path Name T) CONST
D formatName 8A CONST
D unzipOptions LIKEDS
(Qzip Unzip Options T)
D CONST
D errorStruct 1000A OPTIONS (*VARSIZE)

The Zip APIs are implemented by means of the QZIPUTIL service program located in library QSYS.
The service program is written in ILE C++, hence IBM is following the convention of specifying
either *CWIDEN or *CNOWIDEN in the prototype definition. In this case irrespective of no return
value or parameters passed by value being present, which are normally considered the indicators for
this practice.

Another issue to take into consideration is the fact that among the Zip APIs, error return messages
are a number of messages supporting *CCHAR message data (a character string that can be
converted). If data of this type is sent to a message queue that has a CCSID tag other than 65535 or
65534, the data is converted from the CCSID specified by the send function to the CCSID of the
message queue.

To extend the *CCHAR convertible character support to the API error message handling in the two
CPPs calling the Zip APIs, I employ the API error return message data structure format ERRC0200.
For more information on this technique, please check out the article "APIs by Example: Using the
ERRCo0200 Data Structure," by following the link below.

Anyway, as for the two Zip File CL. commands constructed on the basis of the corresponding Zip
APIs, let's take a look at the Zip File (ZIPF) command prompt, in essence simply exposing the
parameters supported by the QzipZip API:

http://iprodeveloper.com/print/rpg-programming/apis-example-zip-and-unzip-files-ne... 03-04-2014

APIs by Example: Zip and Unzip Files with the New 7.1 Zip API Support Page 6 of 8

zip File (ZIPF)

Type choices, press Enter.

File to compress

Compressed file name

Verbose option *NONE *NONE, *VERBOSE
Directory subtree *ALL *ALL, *NONE
Comment *BLANK

You specify the file or directory to zip, as well as the zip file to create. Wildcard characters and
pattern matching of the path name are not supported. The path can be an absolute path or a relative
path name. All relative path names are relative to the current directory at the time when the ZIPF
command is run. In addition to specifying whether a directory subtree should be included in the zip
operation, you also have the option of associating a comment with the zip file being created as a
result of the ZIPF command being run.

The complementary Unzip File (UNZIPF) command has the following prompt, which likewise
exposes the parameters supported by the QzipUnzip API:

Unzip File (UNZIPF)

Type choices, press Enter.

Compressed file name

Directory to place files

Verbose option *NONE *NONE, *VERBOSE

Replace o o o . .. *NO *YES, *NO

http://iprodeveloper.com/print/rpg-programming/apis-example-zip-and-unzip-files-ne... 03-04-2014

APIs by Example: Zip and Unzip Files with the New 7.1 Zip API Support Page 7 of 8

I've included the verbose option for both commands for completeness. Yet in order to actually
employ this option, programming skills and efforts are involved, as mentioned earlier. For full
documentation of the ZIPF and UNZIPF commands, please refer to both commands' online help text
panel group. Note that the full path of the zipped object is placed in the specified directory when the
object is decompressed and restored.

Also note that the CCSID of a zipped object is not preserved upon decompression, but rather reflects
the job CCSID being in effect when the zip file is unzipped. This restriction needs to be considered in
order to ensure that a decompressed text file's CCSID still reflects the file's actual content correctly.
The Zip and Unzip APIs use the open-source zlib library to inflate and decompress the specified files,
respectively. To learn more about the open-source zlib library. please follow the link at the end of this
article pointing you to the zlib library home page.

This APIs by Example includes the following sources:

CBX240 -- RPGLE -- Zip File - CPP

CBX240H -- PNLGRP -- Zip File - Help

CBX240V -- RPGLE -- Zip File - VCP

CBX240X -- CMD -- Zip File

CBX241 -- RPGLE -- Unzip File - CPP

CBX241H -- PNLGRP -- Unzip File - Help

CBX241V -- RPGLE -- Unzip File - VCP

CBX241X -- CMD -- Unzip File

CBX240M -- CLP -- Zip/Unzip File - Build Commands

To create all these command objects, compile and run the CBX240M CL program, following the
instructions in the source header. You'll also find compilation instructions in the respective source
headers.

PTFs Delivering 7.1 ZIP and UNZIP support:

57708S1-S144777 - Zip and Unzip API on V7R1

5770SS1-S144998 - Header files for QZIPUTIL service program

Related articles and documentation:

IBM i 7.1 Enhancements Optimize ISV Support Announcement

zlib Library Home Page

Barbara Morris, IBM: Converting from C prototypes to RPG prototypes

APIs by Example: Conversion of a Path Name

APIs by Example: Using the ERRC0200 Data Structure

Suppress PASE Output Messages (stdin, stdout, stderr)

Communicating Through a Pipe

Communicating Through a Pipe — Part 2

http://iprodeveloper.com/print/rpg-programming/apis-example-zip-and-unzip-files-ne... 03-04-2014

APIs by Example: Zip and Unzip Files with the New 7.1 Zip API Support Page 8 of 8

Don't Submit, Spawn!

This article demonstrates the following UNIX-type APIs:

Compress Files and Directories (QzipZip) API

Decompress an archive file (QzipUnzip) API

API Path name format

Error code parameter format

Retrieve the source code for this API example.

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-zip-and-unzip-files-new-
71-zip-api-support

http://iprodeveloper.com/print/rpg-programming/apis-example-zip-and-unzip-files-ne... 03-04-2014

