4/6/2014 APIs by Example: Working with Database Files--the APl Way!

print | close

APIs by Example: Working with Database Files--the APl Way!

Carsten Flensburg
Sat, 03/29/2014 - 1:55pm

A Swiss Army knife provides a variety of useful tools all in one place. In this installment of
APIs by Example, I'll present a similar toolset that helps database programmers get the job
done efficiently : the Work with Database Files (WRKDBF2) command. The WRKDBF2
command is the result of me performing repetitive tasks against all sorts of database files
whenever Iwasinvolved in research, design, or programming efforts. Ieventually came to
the conclusion that a single command offering shortcuts to all the database tools I used most

often would be a great time saver; thus, the WRKDBF2 command was born.

WRKDBF2 Command Basics

The WRKDBF2 command is a simple list panel utility. I employ the Open List of Objects (QGYOLOBJ) APIto
retrieve all the file objects that meet the file criteria specified as the command’s primary parameter. For all
physical files, the Retrieve Database File (QDBRTVFD) APl is called to ensure that only database files are
selected. The WRKDBF2 command’s list panel offers access toa variety of CL commands that specifically target
database files. (A number of these commands have been presented in earlier installments of the APIs by
Example series; I've included links in the Find Out More section below.) The Open List of Objects (QGYOLOBJ)
APIparameter list documented in Figure 1 involves up to 15 parameters.

Figure 1: Open List of Objects (QGYOLOBJ) API parameters:

Open List of Objects (QGYOLOBJ) API

Required Parameter Group:

Receiver variable

Length of receiver variable
List Information

Number of records to return
Sort information

Object and library name
Object type

Authority control

9 Selection control

10 Number of keyed fields to return
11 Key of fields to return

12 Error Code

o ~J oy U d W N -

Optional Parameter Group 1:

13 Job identification information
14 Format of job identification information

Optional Parameter Group 2:

15 Auxiliary storage pool (ASP) control

Output
Input
Output
Input
Input
Input
Input
Input
Input
Input
Input
I/0

Input
Input

Input

Char (*)
Binary (4)
Char (80)
Binary (4)
Char (*)
Char (20)
Char (10)
Char (*)
Char (*)
Binary (4)
Array (*) of Binary(4)
Char (*)

Char (*)
Char (8)

Char (*)

Twelve of those are required, and the remaining three are split into two optional groups. I'll briefly discuss each
of the parameters as Iwalk you through the parameter list.

The Parameters

The first parameter is where the QGYOLOBJ APIreturnsthe requested object information. The data returned is
divided into two parts: a fixed portion that identifies the object and a variable format that reflects the object
attributesrequested in the key field array defined asthe API's 11th parameter. The fixed and variable parts
together form a return record, and depending on the size of the parameter variable, many records might be

http://iprodevel oper.com/print/application-development/apis-example-working -database-files-api-way 1/6

4/6/2014 APIs by Example: Working with Database Files--the APl Way!

returned in one API call.

Each available object attribute is defined by a numeric key, and adding a key value tothe key field array asks
the APItoreturn the associated object attribute in the variable part of the receiver variable parameter. This
method lets you scope the APIreturn information toonly the details that you specifically require, in contrast
with fixed-format data structures, which are often defined as a set of attributes that are mutually related. This
implies that if you need one attribute, you’ll also get all the others, irrespective of the performance penalty
incurred by the APIwhen it retrievesinformation for which you have noimmediate use.

The second API parameter defines the length of the receiver variable and tells the APThow much storage it can
safely address when returning the requested information. The third parameter is a standard data structure
that allows Open List APIs to pass information about the list returned back tothe APIcaller (e.g., total number
of records, actual number of records returned, length of each record, list and completion status). This
information is valuable in terms of navigating the list as well as assessing whether the requested information is
accurate and complete.

The fourth parameter is a single integer instructing the APThow tobuild the list and how many records to
return. Basically, an Open List API builds the list either synchronously or asynchronously. The former method
means the entire list is built before the API call completes; this approach is requested by submitting the special
value -1. Any value greater than -1 will cause a secondary server job tobe submitted, and this server job will
then be in charge of building the list. In this case, the initial API call completes as soon as the number of records
specified have been retrieved.

The next parameter gives the APIcaller the option to define the sort order that will be applied when the return
list is built (this is another open list concept). Technically, the mechanism isimplemented using the same
convention and method as the Sort (QLGSORT) and the Sort Input/Output (QLGSRTIO) APIs. You can ignore
this option, but it lets you easily control and adapt the output order of the returned list, soit can come in handy.

The sixth parameter defines the object and the library name that identifies the objects toinclude in the list.
Special values are supported for both parameter elements. Proper research of this parameter is amply rewarded
because it supports a number of very useful list configuration options. For details, check out the API
documentation. You can further qualify the object selection with the seventh parameter, which lets y ou specify
the object type as either a specific object type or the special value *ALL.

The eighth and ninth parameters work in conjunction and let you narrow down the returned object list based
on an authority control format and a selection control format, respectively. The two control formats allow y ou
to, for example, select objects based on the object authority assigned tothe current user, ignore adopted
authority, or select damaged objects only. Again, the APIdocumentation has all the details—for now, just the
note that in certain circumstances, these two parameters can be very useful.

The 10th parameter is a single integer containing the number of key field values submitted in the key field
array parameter (the 11th parameter, which was explained earlier). This information lets the API know
exactly how many key field values to process. The 12th parameter is the standard APIerror data structure,
which you use todetermine whether the QGYOLOBJ API call completed successfully. To check for a successful
completion, make sure the Bytes available subfield in the error data structure is equal to zero. If no error
occurred, it’s safe to proceed.

Optional parameter group one consists of parameters 13 and 14. The 13th parameter, a Job identification
information data structure, is used to identify the job, or thread within a job, for which objects can be searched
using the thread'slibrary list. This means you can use the QGYOLOBJ APIto list objects found in another job’s
QTEMP library, for example, or use another job’s library list tolocate the objects being listed. If y ou specify this
parameter, you must also specify a library name—either QTEMP or one of the special values (*CURLIB, *LIBL, or
*USRLIBL).

Parameter 14 identifies the data structure format used in the 13th parameter toidentify the job or thread used
to select the object list. You use format JIDFooo0o0 toidentify the current job and JIDFo100 and JIDFo200 to
identify another job. Format JIDFo200 is used if you have accesstoa thread handle tothe job in question.
Thread handles, which are returned by some Work Management APIs, are the simplest way toidentify a thread
in a job. If you don’t have a thread handle, you can use format JIDFo100, where the job or thread is identified
by a specified thread identifier.

http://iprodevel oper.com/print/application-development/apis-example-working -database-files-api-way

4/6/2014 APIs by Example: Working with Database Files--the APl Way!

Optional parameter group two comprises only parameter 15, the Auxiliary storage pool (ASP) control format. This
format is used to tell the ASP tosearch when the object list is built, and it’s quite a simple data structure (refer
tothe API documentation for the details). Tolearn more about the programming techniquesinvolved in using
the Open List APIs, read my article “APIs at Work — with Jobs.”

Master the QGYOLOBJ API

Despite the many parameters, once you’ve used the QGYOLOBJ API a few times it’s fairly easy toadapt and
tailor your code to meet new requirements. The WRKDBF2 command is based on the requested Object type *FILE
object list of being returned by the QGYOLOBJ APL The selection is further qualified because the Object attribute
is specified as either a physical file (PF) or a logical file (LF). As Imentioned earlier, physical file objects are
validated to exclude source physical files from the presented list (logical files are, by definition, database files).

The WRKDBF2 command prompt and list panel are shown in Figure 2 and Figure 3, respectively.

Figure 2: Work with Database Files (WRKDBF2) command prompt:

Work with Database Files (WRKDBF2)

Type choices, press Enter.

File« « « Name, generic*, *ALL

Library+ .« o o . . *LIBL Name, *LIBL, *CURLIB...
File type C e e e e e e e e *ALL *ALL, *PF, *LF, *DDMF
Sort order *FILE *FILE, *LIB

Figure 3: Work with Database Files list panel

Work with Database Files WYNDHAMW
16-03-14 11:05:28
Type options, press Enter.

1=PDM 2=Change 3=Copy 4=Delete 5=Display data 6=Display fields
7=Access paths 8=File desc 9=Run query 10=WRKDBF ll=Analyze LF
12=Triggers 13=Change desc 14=Clear 15=Un-delete l16=Generate SQL
Opt File Library Type Text
QADBCCST QSYSs PF Constraint Field Usage Information
QADBCKCL QSYS LF LF for QADBCCST by Constraint Library and
QADBCLNK QSYS LF
QADBFCST QSYS PF File Level Constraint Cross Reference File
QADBFDEP QSYS PF Cross reference dependency file
OADBIATR QSYS LF Cross reference logical file by attribute
QADBIFLD QSYS PF Cross reference physical file
QADBILFI QSYS LF Cross reference logical file by long name
QOADBILLB QSYS LF Cross reference logical file by long libra
QADBIREL QSYS LF
More. ..

Parameters or command

===>

F3=Exit F4=Prompt F5=Refresh F9=Retrieve Fll=Display full text
Fl2=Cancel Fl13=Start SQL session Fl4=Run SQL statements F24=More keys

All in all, 16 list options are available in the Work with Database Files list panel, giving you the option of
investigating or managing various aspects of the listed database files with the associated database CL
commands:

1=PDM (WRKMBRPDM)
2=Change (CHGPF/CHGLF)
3=Copy (CPYF)
4=Delete (DLTF)
5=Display data (DSPPEM)
6=Display fields (DSPFFD2)
7=Access paths (DSPPFAP)
8=File desc (DSPFED)

9=Run query (RUNQRY)
10=WRKDBF/UPDDTA (WRKDBF/UPDDTA)
ll1=Analyze LF (ANZLFITG)
12=Triggers (WRKPEFTRG)

http://iprodevel oper.com/print/application-development/apis-example-working -database-files-api-way

3/6

4/6/2014 APIs by Example: Working with Database Files--the APl Way!

13=Change desc (CHGOBJD)
14=Clear (CLRPFM)
15=Un-delete (UNDELZ2)
16=Generate SQL DDL (GENSQLDDL)

The actual CLcommand hiding behind the option’s textual description is shown in parentheses. Note that for
option 10, the WRKDBF command will be listed if you have the WRKDBF product installed on your sy stem;
otherwise, the native Update Data (UPDDTA) command will be shown. The GENSQLDDL command has been
updated toreflect new capabilities that have been added tothe QSQGNDLL APL

Option 15 is the un-delete command UNDEL2 written by Dave McKenzie, and it's included with the code
download for this article. UNDEL2 version is 2.0.7 is (according to Dave) expected to be the final version of this
excellent and very useful command, so be sure to grab it while you can. (Note that the UNDEL2 command is
also part of Bill Reger’s WRKDBF utility.) Thanks to Dave for this lifesaving utility!

How to Compile

Below you’ll find instructions on how to create the Work with Data Base Files (WRKDBF2) command and all its
associated commands and objects. The following sources are included with the code download available with this
article:

CBX123 --RPGLE -- Print File Field Description - CPP
CBX123H -- PNLGRP -- Print File Field Description - Help
CBX123X —CMD --Print File Field Description

CBX123M--CLP - Print File Field Description - Build Command

CBX176 --RPGLE --Generate SQL Data Definition Statements - CPP
CBX176H -- PNLGRP - Generate SQL Data Definition Statements - Help
CBX176X —-CMD --Generate SQL Data Definition Statements

CBX176M --CLP - Generate SQL Data Definition Statements - Build command

CBX177 --RPGLE -- Display Physical File Access Paths - CPP

CBX177E --RPGLE -- Display Physical File Access Paths - UIM Exit Program
CBX177H -- PNLGRP -- Display Physical File Access Paths - Help

CBX177P - PNLGRP -- Display Physical File Access Paths - Panel group
CBX177V --RPGLE -- Display Physical File Access Paths-VCP

CBX177X —CMD --Display Physical File Access Paths

CBX177M --CLP - Display Physical File Access Paths - Build command

CBX178 -—-RPGLE -- Display File Field Description 2 - CPP
CBX178E -- RPGLE -- Display File Field Description 2 - UIM Exit Program
CBX178H -- PNLGRP - Display File Field Description 2 - Help

CBX178P -- PNLGRP - Display File Field Description 2 - Panel Group

http://iprodevel oper.com/print/application-development/apis-example-working -database-files-api-way 4/6

4/6/2014 APIs by Example: Working with Database Files--the APl Way!

CBX178X --CMD --Display File Field Description 2

CBX178M --CLP - Display File Field Description 2 - Build Command

CBX215 - RPGLE -- Analyze Logical File Integrity - CPP
CBX215H — PNLGRP — Analy ze Logical File Integrity - Help
CBX215P -- PNLGRP - Analy ze Logical File Integrity - Panel Group
CBX215V - RPGLE -- Analy ze Logical File Integrity - VCP
CBX215X —-CMD - Analyze Logical File Integrity

CBX215M --CLP --Analyze Logical File Integrity - Build command

CBX246 - RPGLE -- Work with Physical File Triggers

CBX246E -- RPGLE -- Work with Physical File Triggers - UIM Exit Pgm
CBX246H -- PNLGRP -- Work with Physical File Triggers - Help
CBX246P - PNLGRP -- Work with Physical File Triggers - Panel Group
CBX246V -- RPGLE -- Work with Physical File Triggers - VCP

CBX246X --CMD --Work with Physical File Triggers

CBX246M --CLP --Work with Physical File Triggers - Build command

CBX267 --RPGLE -- Work with Database Files - CCP

CBX267E — RPGLE -- Work with Database Files - UIM Exit Program
CBX267H -- PNLGRP -- Work with Database Files - Help

CBX267P - PNLGRP -- Work with Database Files - Panel Group
CBX267V --RPGLE -- Work with Database Files - VCP

CBX267X --CMD --Work with Database Files

CBX267M --CLP --Work with Database Files - Build Command

To create the above commands and associated objects, compile and run the CBX267M CL program, which will
call all the other CL programs included in the above list, following the instructions in the source header. You’ll
also find compilation instructionsin the respective source headers of the individual sources.

Find Out More

Work with Database File (Bill Reger)

“APIs at Work — with Jobs”

“APIs by Example: Analvzing Logical Files Using the QDBRTVFD File API”

“APIs by Example: Displaving and Locating a Phvsical File's Access Paths”

“APIs by Example: Working with Database Files, Fields, and More”

http://iprodevel oper.com/print/application-development/apis-example-working -database-files-api-way

5/6

4/6/2014 APIs by Example: Working with Database Files--the APl Way!
“APIs by Example: Reverse Engineering Database Files and Objects to SQL DDL Statements”

“APIs by Example: Physical File Triggers and the QDBRTVFD API”

“Teach Your Old DB2 New Tricks”

“Simplify DDS to SQL Conv ersion”

“Use SQL CREATE OR REPLACE to Improve DB2 for i Object Management”

“Replacing a DDS Physical File with an SQL Table”

Open List of Objects (QGYOLOBJ) API

Retrieve Database File Description (QDBRTVFED) API

Sort (QLGSORT) API

Sort Input/Output (QLGSRTIO) API

Content Classification: Influencer

Source URL: http://iprodeveloper.com /application-development/apis-example-working-database-files-api-way

http://iprodevel oper.com/print/application-development/apis-example-working -database-files-api-way 6/6

