APIs by Example: Cryptographic Key Management - Creating and Translating Key St... Page 1 of 9

ﬂ print | close

APIs by Example: Cryptographic Key Management -
Creating and Translating Key Stores

System iNetwork Programming Tips Newsletter

Carsten Flensburg
Carsten Flensburg
Thu, 01/24/2008 (All day)

As of V5R4, i5/0S now includes key stores. Technically, key stores have an object type of *FILE --
and more specifically, a physical data base file -- but data access to key stores is only possible
through the Cryptographic Services APIs. Key stores offer the option of storing key encryption keys
or data keys, securely encrypted under a master key. If you are unfamiliar with the concepts of
master keys, key encryption keys, and data keys, please see my earlier Cryptographic Key
Management articles, which cover those topics in more detail; links are provided at the end of this
article.

The Cryptographic Services APIs for managing key stores provide a variety of functions, such as
creating a key store, generating or writing a key store record, and deleting a key store record. Other
key store APIs let you retrieve the attributes of a key store record or translate all the key store records
in a key store encrypted with one master key to another. To discuss key stores in more detail and
provide some key store API coding examples, today's issue of APIs by Example presents a pair of CL
commands named Create Key Store (CRTKS) and Translate Key Store (TRNKS) that are based on the
respective APIs.

The Cryptographic Services APIs that require a key as input to a cryptographic operation have had
added a new KEYD0400 key description parameter format to enable the use of key encryption keys
or data keys stored in a key store. This new format lets you specify a qualified key store name and a
key label for the key parameter. The key label is the name that uniquely identifies a specific key store
record within a key store; you define it when you add the key record to the key store. I discuss key
store records in more detail in a moment, and an upcoming APIs by Example will look more closely
at the options and methods controlling the management of key store records.

Specifying the KEYD0400 format as input to a Cryptographic Services API causes the API to retrieve
the key from the key store and decrypt it with the master key associated with the key store. While in
the key store, the key is encrypted and thereby securely protected by the master key. The option of
specifying the key store record directly to a Cryptographic Services API lets you maintain a closed
circuit for the duration of the entire encryption process performed by that API, thus avoiding the
exposure of the key outside of the API domain.

However, this circumstance requires careful consideration on your part to ensure that users are given
proper authorization to both the key stores and the APIs involved. Anyone obtaining this access will
be able to extract the key from the key store, or use it to retrieve the data encrypted under it.
Likewise, it.s very important that you include key stores in your backup schedule to enable recovery
of the key encryption keys and data keys stored there. Imagine if you had a system failure, and
restored your data to a new computer, only to learn that none of the encrypted data is accessible
because the key stores are gone! Further backup considerations apply at the point where new key

http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-key-ma... 03-04-2014

APIs by Example: Cryptographic Key Management - Creating and Translating Key St... Page 2 of 9

store records have been added or the key store has been translated. I explain key store translation
shortly, so bear with me if this is an unfamiliar term to you.

Key stores are a great addition to the Cryptographic Services APIs and the cryptographic
infrastructure included in i5/0S -- let's look at how to create them with the Create Key Store
(QC3CRTKS/Qc3CreateKeyStore) API. This API can be called as a program named QC3CRTKS, or as
an ILE procedure named Qc3CreateKeyStore. For ease of use and to provide an example of how to
call the API, I.ve created a Create Key Store (CRTKS) CL command -. here.s what the CRTKS
command prompt looks like:

Create Key Store (CRTKS)

Type choices, press Enter.

Key store Name
Library *CURLIB Name, *CURLIB
Master key ID 1-8
Text 'description' *BLANK
Authority *EXCLUDE Name, *EXCLUDE,
*LIBCRTAUT. ..

You specify a qualified key store name, the Master Key ID of the master key you want to associate
with the key store, as well as an optional text description and the public authority to assign to the key
store. Please note that the specified Master Key ID need not be set at the point where the key store is
created, but rather when key store records are actually added.

For the reasons explained earlier, I have defaulted the public authority I have to *EXCLUDE. But
remember that object authority offers no protection against user profiles that have *ALLOBJ special
authority in the profile! Careful planning of your user profile and object authorization scheme is still
of utmost importance to ensure a safe and secure cryptographic infrastructure.

To try out the CRTKS utility, run the following command to create a key store by the name of
KEYSTOREO1 in the QGPL library:

CRTKS KEYSTORE (QGPL/KEYSTOREO1)
KEYID(7)
TEXT (*BLANK)
AUT (*EXCLUDE)

If the above CRTKS command completes successfully, you'll receive a completion message that
verifies that the key store was created.

Message ID : CBX0021 Severity .
00

Message type : Completion

http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-key-ma... 03-04-2014

APIs by Example: Cryptographic Key Management - Creating and Translating Key St... Page 3 of 9

Date sent : 19-01-08 Time sent

11:40:40
Message : Key store KEYSTOREOl created in library QGPL.
Cause : The key store KEYSTOREOl was successfully

created in

library QGPL. The master key ID 7 will be used to encrypt the
cryptographic

keys stored in the key store.

To verify that a key store was created as opposed to an ordinary physical file, try executing the Run
Query (RUNQRY) command against it. You will receive the QRY2293 exception message: Query
cannot be run. See lower level messages. Checking out the job log leads to the discovery of a
CPF4234 diagnostic message preceding the QRY2293 exception message:

Message ID : CPF4234 Severity
50

Message type : Diagnostic

Date sent : 19-01-08 Time sent
11:55:51

Message : Input or output operations for member
KEYSTOREOLl not

allowed.

Cause : Member KEYSTOREO1l file KEYSTOREOl in library

QOGPL could

not be opened because it does not allow any input or output
operations. The

input and output operations allowed for member KEYSTOREOl are
contained in

the attributes specified for file KEYSTOREOl in library QGPL. The

attributes of the file can be displayed by using the DSPFD
command.

The Display File Description (DSPFD) explains the cause of the above CPF4234 diagnostic message.
Note the bolded part of this excerpt of the DSPFD command output:

19-01-08 Display File Description
DSPFD Command Input
File D S Y

KEYSTOREOL
Library« . .« QGPL

http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-key-ma... 03-04-2014

Type of information

File attributes

System

File Description Header

File

KEYSTOREO1

Library

Type of file

File type

Auxiliary storage pool ID

Data Base File Attributes

Externally described file

SQL file type

File level identifier

1080119114039

Creation date

Text 'description'
Distributed file
Partitioned SQL Table
DBCS capable

Maximum members
Number of constraints
Number of triggers

Number of members

Reuse deleted records

Coded character set identifier

Allow read operation

Allow write operation

Allow update operation

Allow delete operation
Record format level check
Access path

Access path size

Access path logical page size
Maximum key length

Maximum record length

TYPE

FILEATR

SYSTEM

FILE

FILETYPE

TEXT

MAXMBRS

REUSEDLT
CCSID

ALWUPD
ALWDLT
LVLCHK

ACCPTHSIZ
PAGESIZE

http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-key-ma...

APIs by Example: Cryptographic Key Management - Creating and Translating Key St... Page 4 of 9

*ALL

*ALL

*LCL

QGPL

Physical

*DATA

00001

Yes

TABLE

19-01-08

No

No

No

= o P

*YES
65535
No

No

*NO

*NO

*YES

Keyed

*MAX1TB

*KEYLEN

97

2556

03-04-2014

APIs by Example: Cryptographic Key Management - Creating and Translating Key St... Page 5 of 9

As you can see, none of the data access operations are allowed for key store files: Read, write, update
and delete operations are all prohibited. None of these attributes, however, prevent you from
displaying the key store record format. Using the Display File Fields (DSPFFD2) command
(presented in an earlier APIs by Example article) reveals the following database record format
layout:

File : KEYSTOREQO1 Record length . : 2556
Library . . . : QGPL Field count . . : 10
Record format . : KEYSTOREQO1
File type . . . : PF Include field
Access path . . : *KEYED UNIQUE Include text
Field Data type Buffer Length Dig Dec Key Text
KYLABEL Char 1 97 1 A
RESRV1 Char 98 3
KEYTYPE Binary 101 4 9 0
KEYSIZE Binary 105 4 9 0
TIMEDATE Char 109 4
Kvv Char 113 20
KYVARIANT Binary 133 4 9 0
CHECKSUM Binary 137 4 9 0
RESRV?2 Char 141 2
TOKEN Var Char 143 2414

The above record format applies to all i5/0S key store files and the attributes together define the
information stored in a key store record. But more about key store records next time. If you want to
delete the key store created earlier, you can do so using the Delete File (DLTF) command:

DLTF FILE (QGPL/KEYSTOREO1)
The second command I present today, Translate Key Store (TRNKS), is also based on a

corresponding API -- the Translate Key Store API is named QC3TRNKS and Qc3TranslateKeyStore
for the OPM and ILE versions, respectively.

http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-key-ma... 03-04-2014

APIs by Example: Cryptographic Key Management - Creating and Translating Key St... Page 6 of 9

Translation in this context reflects the event that the keys in the key store are first decrypted using
the master key that originally encrypted the keys and, in the same process, immediately following
decryption the keys are again encrypted using another master key. The need to perform this re-
encryption process could be prompted by one of two circumstances:

1. The same master key ID has changed version since the original encryption of the key store
records. This occurs if, using the Set Master Key command or API, a new master key version
has been promoted to the current version, and the original version has been saved to the old
version. To avoid the possible loss of the old master key version, should someone repeat the
aforementioned process, I recommend that you translate all keys still encrypted under the old
version of the master key to the current version as soon as possible, after you set the master
key.

2. Suppose you decide to change the master key ID associated with a key store. Say a key store is
currently associated with master key ID 1 and you need to change the key store master key to
master key ID 2. You can use the TRNKS command or API to do this. The same precautions
mentioned above apply here as well.

As you can see below, the Translate Key Store (TRNKS) command has a quite simple interface:

Translate Key Store (TRNKS)

Type choices, press Enter.
Key store Name
Library+ Name
+ for more values
Master key ID 1-8

You can specify up to 32 different key stores in one execution of the TRNKS command. The TRNKS
APT will process each key store in turn, using the currently associated Master Key ID and the stored
Key Verification Value (KVV) to locate the correct version of the master key (as explained last time)
to decrypt all keys. Then, immediately following decryption, the current version of the specified
master key ID is used to re-encrypt the keys. Should the translation process at some point encounter
an error or exception, the process will be terminated immediately, and the job log of the executing
job should be consulted to establish cause and consequences.

In addition to the security, confidentiality, and authorization aspects mentioned earlier, the
following conditions and considerations apply to the utilities and APIs presented in this article: The
Create Key Store API only requires the usual *EXECUTE and *ADD authority to the library in which
the key store is created. I.ve decided that for my system though, to further add the requirement of
*ALLOBJ and *SECADM special authority in the user profile executing the Create Key Store
(CRTKS) command.

This precaution reduces the number of user profiles allowed to create key stores (using the CRTKS
command) significantly on systems with an adequate security configuration, and I.d like to limit
potential sources of errors and mistakes as much as possible, also in the context at hand. Since the
source for the CRTKS CPP is included with this article, you.re of course free to relax this restriction
should you decide to do so.

http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-key-ma... 03-04-2014

APIs by Example: Cryptographic Key Management - Creating and Translating Key St... Page 7 of 9

The Translate Key Store API needs *OBJOPR, *READ and *UPD authority to the key store object in
order to process the key store records. I.ve replaced this requirement with function usage
authorization. This implies that any user that attempts to run the Translate Key Store (TRNKS)
command will need to be specifically and individually authorized to the
CBX_CRYPTO_KEYSTORE_XLATE that is registered by the CBX185M CL program provided with
this article to build the CRTKS and TRNKS commands. The user running the CBX185M CL program
will be authorized to the TRNKS command.

Use the following command to locate and change the function usage registrations applying to the key
management utilities delivered with the Cryptographic Key Management articles in previous APIs by
Example articles:

WRKEFCNUSG FCNID (CBX CRYPTO *)

Given that you.ve loaded and installed the commands and usage registrations provided with this and
the previous APIs by Example articles, you should see a list similar to the one below:

Work with Function Usage

Type options, press Enter.

2=Change usage 5=Display usage
Function ID
CBX CRYPTO KEYSTORE XLATE
translation
CBX CRYPTO MASTERKEY CLEAR

Opt

CBX CRYPTO MASTERKEY LOAD

Function Name
Cryptograhic key store

Clear cryptograhic master key

Cryptograhic master key part

load
CBX CRYPTO MASTERKEY SET Set cryptograhic master key
CBX CRYPTO MASTERKEY TEST Cryptograhic master key test
Bottom

Parameters for option 2 or command

===>

F3=Exit F9=Retrieve Fl2=Cancel
F17=Top

F18=Bottom

F4=Prompt F5=Refresh

Use option 2 to add and/or remove users. function usage. You can find more information on function
usage registration prerequisites and requirements in the APIs by Example article of December 13,
2007, please follow the link provided below.

L1 be continuing the Cryptographic Key Management coverage in upcoming issues of APIs by
Example. Next time 1.1l show you how to generate, display, and delete key store records, so stay

http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-key-ma... 03-04-2014

APIs by Example: Cryptographic Key Management - Creating and Translating Key St... Page 8 of 9

tuned. And in the meantime, if you.re facing the challenge of implementing cryptographic
applications of your own and looking for information and inspiration, be sure to check out the links
below pointing to NIST (National Institute of Standards and Technology) publications, providing a
wealth of application security and cryptography related documentation and recommendations.

This APIs by Example includes the following sources:

CBX180 -- RPGLE -- Cryptographic Key Management - Services

CBX180B -- SRVSRC -- Cryptographic Key Management - Binder source
CBX185 -- RPGLE -- Create Key Store - CPP

CBX185H —-- PNLGRP -- Create Key Store - Help

CBX185X -- CMD -- Create Key Store

CBX186 -- RPGLE -- Translate Key Store - CPP

CBX186H -- PNLGRP -- Translate Key Store - Help

CBX186X -- CMD -- Translate Key Store

CBX185M -- CLP -- Cryptographic Key Management III - Build commands

To create all above objects, compile and run CBX185M. You.ll find compilation instructions in the
source headers as usual. Note that the two previously published commands Add Function
Registration (ADDFCNREG) and Change User Function Usage (CHGUSRFCNU) are required for the
Translate Key Store (TRNKS) command to run successfully -. and for the CBX185M program to
compile.

The sources for the two aforementioned user function commands were included with my previous
APIs by Example article of November 8. In case you missed that article, you can find it at the link
below. Successfully compiling and running the CBX180M CL setup program included with that
article is a prerequisite to running the CBX185M setup program included today.

Previously published related articles:

APIs by Example: Working with Database Files, Fields and More:
http://www2.systeminetwork.com/article.cfm?id=55705 (October 11, 2007)

APIs by Example: Cryptographic Key Management - Loading and Setting Master Keys:
http://www2.systeminetwork.com/article.cfim?id=55862 (November 8, 2007)

APIs by Example: Cryptographic Key Management - Testing and Clearing Master Keys:
http://www2.systeminetwork.com/article.cfm?id=56035 (December 13, 2007)

Other related documentation:

RFC 4107 Guidelines for Cryptographic Key Management:
http://tools.ietf.org/html/rfc4107

NIST (National Institute of Standards and Technology) Special Security Publications:
http://csre.nist.gov/publications/PubsSPs.html

NIST SP 800-57: Recommendation for Key Management . Part 1:
http://csre.nist.gov/publications/nistpubs/800-57/sp800-57-Parti-revised2 Maro8-2007.pdf

http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-key-ma... 03-04-2014

APIs by Example: Cryptographic Key Management - Creating and Translating Key St... Page 9 of 9

NIST SP 800-57: Recommendation for Key Management . Part 2:
http://csre.nist.gov/publications/nistpubs/800-57/SP800-57-Part2.pdf

NIST (National Institute of Standards and Technology) FIPS Publications:
http://csre.nist.gov/publications/PubsFIPS.html

IBM documentation:

i5/0S: Cryptography concepts:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/rzajc/rzajcconcepts.htm

Cryptographic Services Master Keys:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/apis/qc3MasterKeys.htm

Cryptographic Services Key Store:
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/qc3KeyStore.htm

This article demonstrates the following Cryptographic Services API:

Create Key Store (Qc3CreateKeyStore) API:
http://publib.boulder.ibm.com/infocenter/iseries /vsr4/topic/apis/qc3crtks.htm

Translate Key Store (Qc3TranslateKeyStore) API:
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/ge3trnks.htm

Key Management APIs:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/apis/caterypt6.htm

Cryptographic Services APIs:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/apis/caterypt.htm

http://www.pentontech.com/IBMContent/Documents/article/56187 461 CrtKsTrnKs.zip.

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-cryptographic-key-
management-creating-and-translating-key-stores

http://iprodeveloper.com/print/rpg-programming/apis-example-cryptographic-key-ma... 03-04-2014

