
print | close

APIs by Example: Data Queue APIs and CL Commands, Part 5

System iNetwork Programming Tips Newsletter

Carsten Flensburg

Carsten Flensburg

Thu, 02/22/2007 (All day)

This is the final installment of the articles about the data queue APIs and CL commands. Today, I demonstrate

how to use data queues to establish a communication layer between two programs, and I discuss some of the

problems and considerations involved.

This example uses local data queues, but the information about data queue setup, the programming of the

transaction dialog, and the data queue API calls applies irrespective of where the physical data queues are

located. From the communicating programs' view, it's merely a question of addressing the interface that the data

queue APIs provide.

Using DDM data queues, the programs communicating through data queues can reside on different servers if

required. They can even be on different platforms. For example, both Visual Basic and Java offer programmable

interfaces to data queues. If that topic is of interest to you, follow the links at the end of this article for more

information about DDM data queues as well as VB and Java data queue support.

As I mentioned in part one of this article series, data queues offer a solution to different types of design and

architecture objectives. For example, it could be a need to process a workload from a web application located on

a separate server accessible from the Internet, while the production data and business logic are on a back-end

server behind the company firewall. Or the situation could involve a CPU-intensive application that should have

its system workload moved from expensive interactive CPU cycles to less expensive batch cycles. The latter issue

is potentially not only a question of cost, but also of sufficient system CPU capacity and thereby application

scalability.

To build a robust and flexible data queue communication layer, the following data protocol and application

design aspects are worth considering in the early phase of your development project:

Message Format: What kind of formatting should be applied to the message? For internal applications,

mapped data structures might suffice, but if the data exchange involves external partners or programming

languages with poor data structure facilities, XML is definitely worth considering.

If you stick with data structures, your design should allow for varying-length subfields, to avoid space constraint

problems. To achieve this objective, keep a fixed-length part of the data structure, which includes offset and

length fields defining the location and length of the varying-length subfields. This concept is similar to what is

used by many of the APIs that return information in a receiver variable defined by a data structure.

Regardless of the format that you choose, divide the message into at least two sections:

1. A message header section containing the control data of the message, such as protocol ID, request ID and

type, reply key, message format/version, list control information, offset to and length of message data,

error and event codes, and other similar information, if applicable.

2. A message data section containing the actual request or response data.

Message Extensibility: How should we handle changes in or additions to the message format? For XML-

formatted messages, this concern is well covered; otherwise, including message format and/or message

version/release/modification level information in the message header provides the ticket to safely modify or

extend a message in the future.

Page 1 of 8APIs by Example: Data Queue APIs and CL Commands, Part 5

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-data-queue-apis-and-c...

Message Size Limit: Some message types are by nature limitless in size. For example, when embedded lists or

textual descriptions are involved, it might be impossible or senseless to define the maximum message length to

cover the longest imaginable message length. Instead, you have to include a mechanism that allows a message to

be split into more segments.

One way of providing such a mechanism is adding a correlation-ID and an end-of-message flag to the message

header information. The correlation-ID contains the sequence number of the message segment, and the end-of-

message flag is used to signal when the current message segment is the last in the chain.

For some purposes, such as displaying lists, a better approach is to have the client request the additional

segments one by one as new pages are required. There's no need to build and return a full list if only the first

page is ever displayed. In such a setup, a number-of-list-entries field and a list-offset field is added to the

message header. The list-offset field contains a value that uniquely identifies a list entry, such as a customer

number or product ID. In some cases, this could also be a composite value to ensure uniqueness.

The request message uses the first field to indicate how many list entries are needed to build one page, and it

uses the second field to define where the list should start. If the second field is empty, the list begins with the

first entry. The response message uses the number-of-list-entries field to indicate how many entries are

returned, and it uses the list-offset field to indicate whether there are more entries to request. If this field is

empty, the list is complete; otherwise, the value is to be used in the subsequent request message to retrieve the

next page, thereby ensuring that this page begins at the correct list position.

Whereas these methods of preserving information between client and server job are stateless by nature, other

methods involve establishing this persistence by means of a stateful message dialog, typically by assigning and

exchanging a session ID or session handle. The session ID is then used to identify the storage location needed to

preserve the persistent information. This could be a record in a file, a data area, a user space, a user index, or

something similar.

If such a design is chosen, it is important to include a mechanism in the protocol to signal when the use of the

session ID has completed, so that the related allocated storage can be released — and the session ID safely

reused.

Error and Event Communication: How should error and informational messages be communicated within

the data protocol, to ensure a correct and helpful dialog with the application user? Defining unique error codes

and event codes and related messages helps the receiving part of the application correctly identify and properly

communicate an error or event. Message files can be of great help in creating and administering error messages

and event messages.

Language Support: Do you need to support more than one language within the data protocol? If so, you must

include information in the message header to define the language that applies to the message dialog, so that all

language-sensitive information can be presented in the correct language.

Exception Tolerance: Foreseeable, logical errors, such as a customer record not found, should be handled by

the error and event communication facility that I just described. However, it is very important to include in your

application design an exception trap mechanism that catches — and communicates back — unforeseen errors.

These errors could be any kind of exception that occurs during program execution and that unhandled would

lead to an inquiry message being sent to the QSYSOPR message queue and bring the job to a screeching halt.

Over time, unhandled errors could lead to all the server jobs hanging in a message wait, and before that suffering

performance as the number of message waiting jobs grows. Registering ILE condition handlers, adding RPG/IV

*PSSR subroutines, and coding ditto monitor groups and (e)rror opcode extenders are all vital instruments in

establishing the defensive programming style (also) required for this type of application.

Debug Facility and Application Monitoring: How do you provide for daily monitoring of the application

and investigation of problems and errors? One way is to include log files to record the transaction dialog as well

as the application errors and events. If necessary because of performance or storage considerations, a switch

could control the transaction logging and activate it only if debugging the transaction flow or message dialog is

necessary.

Page 2 of 8APIs by Example: Data Queue APIs and CL Commands, Part 5

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-data-queue-apis-and-c...

To sum up all these considerations, let me continue with the practical implementation in today's sample

application context. In a real-life business application, the data exchange would include customer, product,

pricing, availability, order, accounting, payment, and many other types of information, but to avoid the problem

of generating test data, I've simply chosen to use some information already available on your system to

demonstrate a data queue–driven application: The TCP/IP server start information in the system file

QATOCSTART.

Your part of this demonstration is therefore to envision all the other types of information being distributed and

exchanged in real business applications of similar design and architecture. In this case, I've built the Display

TCP/IP Servers (DSPTCPSVR) command, which displays a list of all or a subset of the TCP/IP servers available

on your system. Using the display option in the list panel, you can further display all the selected server's start

attributes from the QATOCSTART file.

The following are the requirements for my data protocol design as far as request and response types are

concerned:

• Request a list of TCP/IP servers, optionally subset by server type.

• Return a list of TCP/IP servers, including server file key information.

• Request TCP/IP server information for a specific server.

• Return TCP/IP server information for a specific server.

Using the QATOCSTART file layout, I then continue the design efforts by deciding which file fields to include in

the TCP/IP server list. The server name, being the primary key as well, is a good start. The server type and

autostart information completes the list. The remaining fields are then included in the full server attribute

message.

Here's what the QATOCSTART file layout looks like:

File : QATOCSTART Record format . . . : QTOCSTRT

 Library . . : QUSRSYS Record length . . . : 240

Field name Field type Buffer Length Key Column heading

SERVERTYPE Char 1 1 SVR TYP

SERVER Char 2 30 1 U Server

AUTOSTART Char 32 4 Auto Start

LIBRARY Char 36 10 Library of Program

PROGRAM Char 46 10 Program to Call

EXTSTRCMD Char 56 64 External Start CMD

EXTENDCMD Char 120 64 External End CMD

The next step is to decide what information my request and response message headers should include and, as

part of that consideration, how the server list data exchange should work. Here's what I've arrived at:

Data protocol: TCPSVR

Request ID: SVRLST - Inbound

Request header:

Data protocol 6 Char

Transaction ID 16 Char

Request ID 6 Char

Message format 8 Char

Message language 3 Char

Message offset value 30 Char

Number of entries req 4,0 Zoned Valid range 1-24

Request data:

Server type 1 Char

Page 3 of 8APIs by Example: Data Queue APIs and CL Commands, Part 5

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-data-queue-apis-and-c...

Request ID: SVRLST - Outbound

Response header:

Data protocol 6 Char

Transaction ID 16 Char

Request ID 6 Char

Event code 4,0 Zoned

Error code 4,0 Zoned

Event message offset 4,0 Zoned

Error message offset 4,0 Zoned

Response data offset 4,0 Zoned

Message offset value 30 Char

Number of entries rtn 4,0 Zoned

Entry length 4,0 Zoned

Response data:

Server type 1 Char

Server key name 30 Char

Server name 30 Char

Auto start 4 Char

Request ID: SVRATR - Inbound

Request header:

Data protocol 6 Char

Transaction ID 16 Char

Request ID 6 Char

Message format 8 Char

Message language 3 Char

Request data:

Server key name 30 Char

Request ID: SVRATR - Outbound

Response header:

Data protocol 6 Char

Transaction ID 16 Char

Request ID 6 Char

Event code 4,0 Zoned

Error code 4,0 Zoned

Event message offset 4,0 Zoned

Error message offset 4,0 Zoned

Response data offset 4,0 Zoned

Response data:

Server type 1 Char

Server name 30 Char

Auto start 4 Char

Program name 10 Char

Program library 10 Char

Start command 64 Char

End command 64 Char

Given the limited number of file records and the limited amount of server information, simply returning all

server information in the list would be no problem. The reason for not doing that is of course the intention of

demonstrating how to build the two different types of data exchange.

To complete the picture, I have also created the following two examples of log files to capture errors and events

as well as the transaction dialog:

Page 4 of 8APIs by Example: Data Queue APIs and CL Commands, Part 5

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-data-queue-apis-and-c...

Error and event log file example:

File : CBX1691F Record format . . . : CBX1691R

 Library . . : QGPL Record length . . . : 595

Field name Field type Buffer Length Column

LGTSTP Timestamp 1 26 Log timestamp

LGTYPE Char 27 6 Log type (LOGERR, LOGEVT)

LGTRID Char 33 16 Transaction ID

LGPGMN Char 49 12 Program/module name

LGFUNC Char 61 12 Function (*PSSR, Monitor, etc.)

LGDGCD Zoned 73 4 0 Diagnostic code

LGDGMS Char 77 7 Diagnostic message ID

LGDGDT Char 84 512 Diagnostic data

Transaction log file example:

File : CBX1692F Record format . . . : CBX1692R

 Library . . : QGPL Record length . . . : 4157

Field name Field type Buffer Length Column

LGTSTP Timestamp 1 26 Log timestamp

LGTYPE Char 27 6 Log type (LOGTRN)

LGTRID Char 33 16 Transaction ID

LGDTPC Char 49 6 Data protocol

LGRQID Char 55 6 Request ID

LGRQTP Char 61 1 Request type (I/O)

LGDATA Char 62 4096 Log data

Now it's time to have a look at the data queue setup. For this application, there is a separate data queue for

inbound and outbound transactions, respectively. Separating the data flows makes great sense for a number of

reasons, including:

• Inbound traffic is typically handled first-in-first-out, whereas outbound traffic is keyed to ensure that the

server reply is received by the correct request sender. To support this requirement efficiently, the inbound

data queue should therefore be created with sequence *FIFO, and the outbound data queue should be

created with sequence *KEYED.

• Separating data flow means that you avoid the risk of data queue object lock conflicts between the sending

and receiving processes.

• Loss of client or server side processing is easier to detect if the inbound and outbound transactions are not

mixed. This setup also makes it easier to monitor the inbound workload to ensure that sufficient server

jobs are available to process the incoming requests.

Here are the commands to create the two data queues needed to establish the program-to-program

communication in the preceding setup:

 CRTDTAQ DTAQ(CBX169I)

 MAXLEN(8192)

 FORCE(*NO)

 SEQ(*FIFO)

 SENDERID(*NO)

 SIZE(*MAX2GB 16)

 AUTORCL(*YES)

 TEXT('Sample application inbound data queue')

 CRTDTAQ DTAQ(CBX169O)

 MAXLEN(8192)

 FORCE(*NO)

Page 5 of 8APIs by Example: Data Queue APIs and CL Commands, Part 5

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-data-queue-apis-and-c...

 SEQ(*KEYED)

 KEYLEN(16)

 SENDERID(*NO)

 SIZE(*MAX2GB 16)

 AUTORCL(*YES)

 TEXT('Sample application outbound data queue')

Both commands are part of the CL program to build the sample data queue application included with this article.

A list of all sources involved in this APIs by Example, as well as instructions for how to create all sample

application objects, is at the end of this article. After successful creation of all objects, follow these steps to

perform a test run:

1. Using the Change Current Library (CHGCURLIB) command, change your job's current library to the one

containing the application.

2. Using the Run Data Queue Server (RUNDTAQSVR) command, start the server process: RUNDTAQSVR

LOGTRN(*YES). To avoid locking up your interactive session, submit the command to batch. Check that

the submitted job has gone active before proceeding.

3. To generate some work for the server job, run the DSPTCPSVR command. The DSPTCPSVR command

requests the list of TCP/IP servers, one page at a time, from the server job through the inbound data

queue CBX169I and receives its reply from the outbound data queue CBX169O. Every time you page

down, the next block of TCP/IP servers is requested. The list request is sent from the CBX1692L UIM List

Exit Program. The list request is processed by the CBX1691 and CBX16911 data queue server programs.

4. The server job logs all transactions to the transaction log file CBX1692F. Using the Display Physical File

(DSPPFM) command, you can monitor the request/response dialog in the transaction log file CBX1692F:

DSPPFM FILE(CBX1692F) FROMRCD(*END).

5. From the DSPTCPSVR panel, you can select option 5=Display server start information. Doing so

generates one request/response per selected TCP/IP server. This can of course also be monitored in the

transaction log file. The server information request is sent from the CBX1692E UIM General Exit

Program. The server information request is processed by the CBX1691 and CBX16912 data queue server

programs.

6. To complete the test run, end the server job submitted in step 2. If you ran the data queue server job

interactively, use the SysRqs (System Request) key in that job and specify option 2, which runs the End

Request (ENDRQS) command.

To get a closer look at the transaction dialog and how the various parts of the sample application play together,

you could also step through the programs as they run in a source debug session.

This concludes my article series about Data Queue APIs and CL Commands. I hope these articles have brought

you some useful tools to work with data queues — and also the inspiration to do so.

This APIs by Example includes the following sources:

CBX169 -- RPGLE -- Data Queue Sample Application - service functions

CBX169B -- SRVSRC -- Data Queue Sample Application - binder source

CBX1691 -- RPGLE -- Run Data Queue Server - TCPSVR Protocol

CBX16911 -- RPGLE -- Run Data Queue Server - SVRLST Request

CBX16912 -- RPGLE -- Run Data Queue Server - SVRATR Request

CBX1691H -- PNLGRP -- Run Data Queue Server - Help

CBX1691X -- CMD -- Run Data Queue Server

CBX1692 -- RPGLE -- Display TCP/IP Servers - CPP

CBX1692E -- RPGLE -- Display TCP/IP Servers - UIM General Exit Program

CBX1692H -- PNLGRP -- Display TCP/IP Servers - Help

Page 6 of 8APIs by Example: Data Queue APIs and CL Commands, Part 5

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-data-queue-apis-and-c...

CBX1692L -- RPGLE -- Display TCP/IP Servers - UIM List Exit Program

CBX1692P -- PNLGRP -- Display TCP/IP Servers - Panel Group

CBX1692X -- CMD -- Display TCP/IP Servers

CBX1691F -- PF -- Error/event log file

CBX1692F -- PF -- Transaction log file

CBX169M -- CLP -- Data Queue Sample Application - build application

To create all these objects, copy all sources to their respective source files in your library, then compile and run

CBX169M. Compilation instructions are in the source headers, as usual.

Articles and IBM documentation — Cross-Platform Data Queue Support:

Exploring the Client Access Data Queue APIs:

http://www.systeminetwork.com/article.cfm?id=1509

Programming with ODBC and Data Queues:

http://www.systeminetwork.com/article.cfm?id=6584

AS/400 Toolbox: Using Dataqueue, Record, and RecordFormat Classes:

http://www.systeminetwork.com/article.cfm?id=7353

Data Queues: A PC-to-iSeries Quick Link:

http://www.systeminetwork.com/article.cfm?id=15842

Use .NET to Develop iSeries Data Queue Applications:

http://www.systeminetwork.com/article.cfm?id=20273

Queue Up to Work with Data Queues in .NET Programs:

http://www.systeminetwork.com/article.cfm?id=53385

Using the Client Access for Microsoft Windows 95 and Windows NT OCX Control and OLE Automation Objects

with Visual Basic:

http://www-

912.ibm.com/s_dir/slkbase.NSF/515a7ef1f8deef8c8625680b00020380/def5574d27de318e862565c2007cbc3c?

OpenDocument

CWBDQ: Q&A for the Optimized Data Queue API:

http://www-

912.ibm.com/s_dir/slkbase.NSF/515a7ef1f8deef8c8625680b00020380/2202a0b08aebc41a862565c2007cb060?

OpenDocument

IBM Toolbox for Java:

http://www-03.ibm.com/servers/eserver/iseries/toolbox/overview.html

Data Queue Host Server Does Not Support DDM Data Queues:

http://www-

912.ibm.com/s_dir/slkbase.NSF/f5ed8d76fdf9afb88625680b00020384/8bc86c06f162066b86256d91006a6cac?

OpenDocument

The previous installments of this article series:

Data Queue APIs and CL Commands, Part 1

http://www.systeminetwork.com/article.cfm?id=53542

Data Queue APIs and CL Commands, Part 2

http://www.systeminetwork.com/article.cfm?id=53685

Data Queue APIs and CL Commands, Part 3

http://www.systeminetwork.com/article.cfm?id=53850

Page 7 of 8APIs by Example: Data Queue APIs and CL Commands, Part 5

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-data-queue-apis-and-c...

Data Queue APIs and CL Commands, Part 4

http://www.systeminetwork.com/article.cfm?id=54001

This article series demonstrates the following data queue APIs:

Retrieve Data Queue Description (QMHQRDQD) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/qmhqrdqd.htm

Send Data Queue (QSNDDTAQ) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/qsnddtaq.htm

Receive Data Queue (QRCVDTAQ) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/qrcvdtaq.htm

Clear Data Queue (QCLRDTAQ) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/qclrdtaq.htm

Retrieve Data Queue Message (QMHRDQM) API:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/qmhrdqm.htm

All data queue APIs are documented here:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/apis/obj2.htm

You can retrieve the source code for this API example from the following link:

http://www.pentontech.com/IBMContent/Documents/article/54098_170_DataQueue5.zip

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-data-queue-apis-and-cl-commands-

part-5

Page 8 of 8APIs by Example: Data Queue APIs and CL Commands, Part 5

04-04-2014http://iprodeveloper.com/print/rpg-programming/apis-example-data-queue-apis-and-c...

