APIs by Example: List Open Files API, and the Display Job Open Files Command Page 1 of 10

ﬂ print | close

APIs by Example: List Open Files API, and the Display Job
Open Files Command

System iNetwork Programming Tips Newsletter

Carsten Flensburg
Carsten Flensburg
Thu, 03/24/2011 (All day)

IBM initially conceived APIs to provide programmers a well-documented and well-
structured interface to system information that in the pre-API days was obtained by
parsing CL. command spooled file output or by calling IBM system internal
programs directly. In addition to APIs' versatility and standardized interfaces, they
also often offer much more information and details than their original CL. command
counterpart.

Today's APIs by Example demonstrates an API that in itself exposes more information about a job's
open files than is available elsewhere. At the same time, true to the concept of a programming
interface, the API approach lets you further enhance the functionality associated with the resulting
Display Job Open Files (DSPJOBOPNF) CL command, compared to the corresponding native
offering. The List Open Files (QDMLOPNF) API delivers the core command functionality of listing a
specified job's currently open file objects.

The IBM CL commands Display Job (DSPJOB) and Work with Job (WRKJOB) both support an
OPTION(*OPNF), which, in the words of the associated help text, performs a similar service: "Files
that are open for the job and the status of system and user files are shown." Programmers often refer
to these commands and this option to examine and verify the files that their programs have opened,
and the type of operation being performed against these files.

You can see the relative record numbers of the file records as they're being processed, and you can
verify the libraries of the files opened. For anyone who has ever enjoyed the outcome of testing an
update program against a production file, the latter is a very useful capability. There's a column
specifying the number of I/O operations performed to the respective open files, and information
about activation scope and activation groups. For many programming tasks, the DSPJOB or
WRKJOB command's Display Open Files panel will help you get your job done. But in some
situations, this panel has shortcomings.

There's no specification of the individual types of output being performed: write, read, write/read,
and other I/0. You only see the accumulated result in a single column. The limited column size for
the I/O count as well as the relative record number at some point causes overflow for jobs
performing either excessive I/0 for longer periods of time or processing large files. Using the
function key F5 to refresh the screen after paging down one or more pages immediately takes you
back to page 1. You have no way of limiting the list panel to include only particular files, libraries,
types of files, or I/0.

As upcoming issues of this column will further demonstrate, you have the happy option as an API
programmer, and given the presence of an appropriate API, to build the tools you need in order to
make your job a little easier and the outcome of your efforts a little better. For now, since this also

http://iprodeveloper.com/print/rpg-programming/apis-example-list-open-files-api-and... 02-04-2014

APIs by Example: List Open Files API, and the Display Job Open Files Command Page 2 of 10

presents the initial specifications for the CPP, let me show you what the DSPJOBOPNF command
prompt looks like:

Display Job Open Files (DSPJOBOPNEF)

Type choices, press Enter.

Job name * Name, *

User« « « « « . < ... Name

Number 000000-999999

File name *ALL Name, generic*,
*ALL

Library« < *ALL Name, generic*,
*ALL

File type . + v v v v « v o . . *ALL *ALL, *BSCF,

*BSCF, *CMNF...
+ for more values

I/0 type . « « « « *ALL *ALL, *ANYIO,

*READ. ..
+ for more values

Output+ . . . 0 .. * *, *PRINT

The command's primary parameter, the job for which to list the open files, is the only one directly
supported by the QDMLOPNF API. The remaining parameters enabling you to qualify which files to
include in the open files list are all enforced by the CPP. You can specify a file name or a generic file
name, a library name or a generic library name, and any number of file types and I/O types in order
to list only a specific selection of open files. The command and all its parameters are documented in
more detail in the accompanying online help text panel group.

Here's the QDMLOPNF API parameter list in its entirety:

Required Parameter Group:

1 Receiver variable Output Char (*)
2 Length of receiver variable Input Binary (4)
3 Format of receiver information Input Char (8)
4 Job identification information Input Char (*)
5 Format of job identification info Input Char (8)
6 Error code I/0 Char (*)

http://iprodeveloper.com/print/rpg-programming/apis-example-list-open-files-api-and... 02-04-2014

APIs by Example: List Open Files API, and the Display Job Open Files Command Page 3 of 10

The first and second parameters define the program variable available for the QDMLOPNF API to
return the open file information and the size of this variable, respectively. Since any arbitrary
number of files may be open when the API is called, it's difficult to predict the exact amount of
storage required to hold all available open file information. I therefore dynamically allocate storage
for the API receiver variable. Initially, I allocate enough storage to cater for approximately 400 open
files. This would cover the storage requirement in most cases. Should it not suffice, however, I repeat
the API call following a reallocation of storage based on the actual amount of open file information
available. This approach translates to the following piece of RPG/IV code:

/Free

ApiRcvSiz = 65535;
POPNF0100 $Alloc (ApiRcvSiz);

OPNF0100.BytAvl = *Zero;

DoU OPNFO0100.BytAvl *Zero;

If OPNF0100.BytAvl > ApiRcvSiz;

ApiRcvSiz = OPNFO0100.BytAvl;
POPNF0100 = %ReAlloc(pOPNF0100: ApiRcvSiz);
EndIf;

LstOpnF (OPNF0100

: ApiRcvSiz
"OPNF0100"

: JIDF0100

: "JIDFO0100"

: ERRC0100

)

EndDo;
/End-Free

The QDMLOPNF API call is repeated until the size of the open file information is less than the size of
the receiver variable (or an error condition is signaled in the API error data structure). Prior to
subsequent API calls, the required amount of storage is reallocated. The dynamically allocated
storage remains allocated until explicitly deallocated or the activation group in which the program
runs. One method of ensuring that allocated storage is released properly irrespective of how a
program ends is to run a program dynamically allocating storage in a *NEW activation group.

This approach might, however, in some contexts constitute a bad practice due to the overhead
related to creating new activation groups. So another method of protecting against storage not being
released is to, for example, register a termination exit procedure. A termination exit procedure is
called by the system runtime whenever a program ends due to anything other than a normal return.
The registered exit procedure then is capable of releasing allocated storage, or performing any other
cleanup procedure required. Note that the system value QENDJOBLMT controls the amount of time
available to complete end job processing, in case job termination is the cause of the program
invocation being ended.

The DSPJOBOPNF CPP therefore initially registers the TrmPgm() procedure. The TrmPgm/()
procedure contains all the operations that I want to be sure are run before the program for which it is

http://iprodeveloper.com/print/rpg-programming/apis-example-list-open-files-api-and... 02-04-2014

APIs by Example: List Open Files API, and the Display Job Open Files Command Page 4 of 10

registered ends. If the CPP ends normally, the final operations performed by the program are to
deregister the TrmPgm() termination exit procedure as a cleanup precaution and then execute the
TrmPgm() procedure inline instead. The code snippets below outline the steps involved in
performing this type of program termination control:

**-— Register termination exit:
D CeeRtx Pr ExtProc ('CEERTX')
D procedure * ProcPtr Const
D token * Options (*Omit)
D fb 12a Options(*Omit)
**—— Unregister termination exit:
D CeeUtx Pr ExtProc ('CEEUTX')
D procedure * ProcPtr Const
D fb 12a Options(*Omit)
/Free
CeeRtx (%Paddr(TrmPgm): *Omit: *Omit);
CeeUtx (%Paddr(TrmPgm): *Omit);

TrmPgm(*Null);

/End-Free

**-— Terminate program:

P TrmPgm B

D Pi

D pPtr * Const
/Free

CloApp (UIM.AppHdl: CLO NORM: ERRCO0100);
DeAlloc (n) pOPNF0100;

*InLr = *On;

Return;
/End-Free

P TrmPgm E

The QDMLOPNF API's third parameter specifies the format in which you want the API to return the
open file information. Currently only a single format, OPNF0100, is offered. A similar limited range
of options exists for the fourth parameter, the Job identification information pointing the API to the
job for which to produce the open file listing. Again, a single format is available, the JIDFo100
format, the name of which must be specified as the fifth parameter when you call the QDMLOPNF
API. Here's the layout of the JIDF0100 parameter structure using an offset base of 1:

http://iprodeveloper.com/print/rpg-programming/apis-example-list-open-files-api-and... 02-04-2014

APIs by Example: List Open Files API, and the Display Job Open Files Command

Offset Field Data type
1 Job name Char (10)
11 User name Char (10)
21 Job number Char (6)
27 Internal job identifier Char (16)
43 Reserved Char (2)
45 Thread indicator Binary (4)
49 Thread identifier Char (8)

Page 5 of 10

The JIDFo100 format is used by a number of work management APIs to let you identify the scope of
the job information to return right down to individual thread level. You identify the job by job name,
user name, and job number, or by the internal job identifier. The latter is a system internal identifier
of any given job that is returned by other APIs in order to allow subsequent API calls to locate the job
faster than possible with the qualified job name. That's all straightforward. Getting the thread
indicator right, however, requires a closer look at the description of this parameter:

Thread indicator

The value that is used to specify the thread within the job for
which information is
to be retrieved.

The following values are supported:

0 The value in the thread identifier field should be used to locate
the thread.

1 Information should be retrieved for the thread in which this
program is running.
The combination of the internal job identifier, Jjob name, job
number, and user
name fields also must identify the job containing the current
thread.

2 Information should be retrieved for the initial thread of the
identified job.

3 Information should be retrieved for all threads within the
specified job.

Specifying a zero for the thread indicator parameter causes the QDMLOPNF API to return open file
information only for the thread identified by the thread identifier parameter. Specifying the value
one retrieves information only for the job calling the QDMLOPNF API. Entering job identification
values identifying another job than the current one causes the API call to fail. Values two and three
both support current as well as other jobs, but the value two only returns information for the
specified job's initial thread. In this case, I want to see all open files associated with any given job, so
I specify the value three for the thread indicator parameter.

As for the sixth and final API parameter, the API error data structure format ERRC0100, this has
been demonstrated and discussed to great extent in other, earlier articles. I've included links to
articles discussing the concept of the API error data structure as well as dynamic memory allocation
at the end of this article, in case you want to read up on the details and specifics. In the same section,

http://iprodeveloper.com/print/rpg-programming/apis-example-list-open-files-api-and... 02-04-2014

APIs by Example: List Open Files API, and the Display Job Open Files Command

Page 6 of 10

you'll also find a number of links to IBM documentation explaining some of the other concepts
discussed or involved in today's article or code.

Now, on to the outcome of our efforts so far. The Display Open Files panel presented by the
DSPJOBOPNF command mainly differs from the original version in that the primary list view panel
showing the open file I/O information has been divided into two panels. The initial panel displayed
identifies the open file and includes information about the file type, member/device name, and

relative record number:

Display Open Files
WYNDHAMW
11-03-11

15:48:40

Job: QPADEVO0007 User: CARSTEN Number: 966052

Open data paths 4

Member/ Record File ---Open----

Relative

File Library Device Format Type Opt Shr Nbr
Record

QSN132 QSYS CF101HOA USRRCD DSP IO NO

QDUODSPF QPDA CF101HOA MSGSEC DSP IO NO

QDUI132 QSYS CF101HOA USRRCD DSP IO NO

QAOKLO2A QUSRSYS QAOKLO2A WOSFMTO1 LGL I YES 1

60

Bottom

Press Enter to continue.

F3=Exit F5=Refresh Fll=Display I/O details Fl2=Cancel
F24=More keys

http://iprodeveloper.com/print/rpg-programming/apis-example-list-open-files-api-and... 02-04-2014

APIs by Example: List Open Files API, and the Display Job Open Files Command Page 7 of 10

The function keys let you toggle the list views, execute the Work with Job (WRKJOB) command, and
position the open files list to top and bottom, respectively. Function key F10 lets you move the list
record selected with the cursor to the top of the panel. Pressing function key F5 maintains the list's
current position based on the top file's ordinal number in the list. This implies that if files preceding
the current top file have been opened or closed since the list was last built, the top file may
consequently change. Under most circumstances, however, the top file remains the same following a

list refresh.

The second open files list view contains the detailed open file I/O information:

WYNDHAMW

15:56:56

File
Other I/0
QSN132
1
QODUODSPF
1
QDUTI132
1
QAOKLOZ2A
0

Bottom

keys

Fl10=Move to top

Job: QPADEVO0007 User:

Open data paths

Library Read

QSYS

QPDA

QSYS

QUSRSYS

Press Enter to continue.

Fl6=Job menu

Display Open Files

CARSTEN
4
Write
0
73
0
1

F17=Top

11-03-11
Number: 966052
Write/Read
0 4
409 1
0 12
0 0

F18=Bottom F24=More

http://iprodeveloper.com/print/rpg-programming/apis-example-list-open-files-api-and... 02-04-2014

APIs by Example: List Open Files API, and the Display Job Open Files Command Page 8 of 10

As the above open files list panel example demonstrates, for each open file listed, the following I/O
event types are counted individually:

Read The number of successful read operations. If record blocking
is not in

effect for the file, this is the number of records. If
record blocking is

in effect for the file, this is the number of record blocks.
A read in this

context defines the transfer of a record or a block of
records from a file

to a program. The data is made available to the program once
the read has

been successfully completed.

Write The number of successful write operations. If record
blocking is not in

effect for the file, this is the number of records. If
record blocking is

in effect for the file, this is the number of record blocks.
A write in

this context defines the transfer of a record or a block of
records from a

program to a file.

Write/ The number of successful write/read operations. A write/read
in this
Read context defines the combination of write and read as one

single operation.

An example of a combined write/read operation is a write
performed to a

display file format, which then immediately after the
completed write

operation waits for an input operation being performed to

the same
display file format.
Other The number of successful I/O operations of the following
types:
I/0 o update

o delete

o change end-of-data
o force end-of-data

o force end-of-volume

o release record lock

http://iprodeveloper.com/print/rpg-programming/apis-example-list-open-files-api-and... 02-04-2014

APIs by Example: List Open Files API, and the Display Job Open Files Command

acquire/release program device

Page 9 of 10

As I mentioned earlier, you can use the function key F5 to refresh the screen and thereby the I/O
count. The DSPJOBOPNF command's third list view panel essentially displays the same activation
group information as the native version, so I don't go into more details here. All panels as well as the
list columns are further explained in the cursor-sensitive help text included with the DSPJOBOPNF

command.

This APIs by Example includes the following sources:

CBX227

CBX227E
CBX227H
CBX227P
CBX227X

CBX227M

RPGLE
RPGLE

PNLGRP --
PNLGRP --

CMD

CLP

Display
Display
Display
Display
Display

Display

Job
Job
Job
Job
Job

Job

Open
Open
Open
Open
Open

Open

Files
Files
Files
Files
Files

Files

CPP

UIM Exit Program
Help

Panel Group

Build command

To create all these objects, compile and run the CBX227M program, following the instructions in the
source header. You'll also find compilation instructions in the respective source headers.

Related Articles:

A Beginner's Guide to APIs (API Error Data Structure)

Introduction to Pointers in RPG (Dynamic Memory Allocation)

IBM Documentation:

Work Management Job Concepts - Jobs

Threads

Memory Management Operations (RPG/IV)

Managing the Default Heap Using RPG Operations

Jobs system values: Maximum time for immediate end

Data Management Operations Overview

Data Management Manual (PDF)

This article demonstrates the following APIs:

List Open Files (QDMLOPNF) API

Register Call Stack Entry Termination User Exit Procedure (CEERTX) API

Unregister Call Stack Entry Termination User Exit Procedure (CEEUTX) API

Retrieve the source code for this API example.

http://iprodeveloper.com/print/rpg-programming/apis-example-list-open-files-api-and... 02-04-2014

APIs by Example: List Open Files API, and the Display Job Open Files Command Page 10 of 10

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-list-open-files-api-and-
display-job-open-files-command

http://iprodeveloper.com/print/rpg-programming/apis-example-list-open-files-api-and... 02-04-2014

