APIs by Example: Identifying and Working with Service Program References Page 1 of 8

ﬂ print | close

APIs by Example: Identifying and Working with Service
Program References

System iNetwork Programming Tips Newsletter

Carsten Flensburg
Carsten Flensburg
Thu, 09/25/2008 (All day)

The concept of service programs is one of the most valuable additions of all time to the RPG
application development toolset on the System i. The ability to externalize and group specific and
well-defined program functions into service programs makes it so much easier to support function
reusability as well as focus on the core program logic and functionality in your programs. Perhaps
even more than a practical achievement, service programs offer a welcome twist to a programmer's
mindset, in terms of the design and development approach promoted and encouraged when taking
advantage of service programs in your daily programming efforts.

Organizing and maintaining service programs, however, requires care and thought. The system
supports and enforces integrity between service programs and the programs or service programs to
which they're bound. Because the binding to a service program and its exported subprocedures or
data is established at the point where a referencing program or service program is created, the
system attempts to verify at program activation time that the service program has not changed in an
incompatible way since the initial binding. Sometimes the ability to resolve service programs'
references and verify maintained integrity ahead of time therefore comes in handy. And so do APIs.

To ensure integrity between a service program and the programs or service programs referencing it,
all service programs are tagged with a current signature. This signature identifies the number and
sequence of the exported procedures and data from the service program and is defined whenever the
service program is created. You have the option of letting the system generate the signature by
specifying the keyword EXPORT(*ALL) on the Create Service Program (CRTSRVPGM) command.
This will cause the compiler to generate a signature based on the number, names, and order of the
service program's subprocedures being defined with the EXPORT keyword on their procedure
interface specifications.

If you want to control service program signatures yourself you have the option of using binder
language. Binder language also allows you to explicitly specify which of the exported subprocedures
you actually want to make available to other programs and service programs as well as to specify a
signature of up to 16 bytes on the binder language's Start Program Export List (STRPGMEXP)
command, as in the following example:

StrPgmExp PgmLvl(*CURRENT) Signature('UsrAppInf 01.0.0")

Export symbol ("DLTUSRTIMZON"
Export symbol ("GETUSRTIMZON"
("SETUSRTIMZON"
("VEYUSRTIMZON"

Export symbol

_—

Export symbol

http://iprodeveloper.com/print/rpg-programming/apis-example-identifying-and-worki... 04-04-2014

APIs by Example: Identifying and Working with Service Program References Page 2 of 8

EndPgmExp

You can still have the compiler generate the signature by specifying the keyword SIGNATURE
(*GEN) though, but I recommend that you specify the signature yourself to ensure a human-readable
and reproducible result. By adding new subprocedures to the end of the export list, binder language
also allows you to maintain and support previous versions of the service program by specifying a
program level (PGMLVL) of *PRV for blocks of subprocedures supported by a previous version of the
service program. A service program therefore optionally supports more than one signature. By
specifying the signature yourself, you also have the option of reusing the signature for future
versions, as long as any new exported subprocedure is added to the end of the export list.

This way you can continue to add procedures to a service program without causing signature
violations to occur to programs bound to earlier versions of the service program. Note that in order
to start taking advantage of binder language for existing service programs, you can generate binder
language members for these by using the Retrieve Binder Source (RTVBNDSRC) command. You
then have the option of adapting the binder source and subsequently re-creating the service
program, specifying the binder language member as the export source on either the CRTSRVPGM or
UPDSRVPGM (Update Service Program) command.

To look up signature information for a specific service program, use the command Display Service
Command (DSPSRVPGM) specifying the keyword DETAIL(*SIGNATURE):

DSPSRVPGM SRVPGM (CBX001) DETAIL (*SIGNATURE)

For the specified program, the above command leads to the panel below, after pressing function key
F11 to see the character version of the signature instead of the hexadecimal format:

Display Service Program Information

Display 1 of 1

Service program o« . 4 e e e . . o CBX001
Library . . . « .« .« « < .+ . . < . . .oz QGPL
owner v 0 0 v e e e e e e CARSTEN
Service program attribute : RPGLE
Detail o *SIGNATURE
Signatures:

UsrAppInf 01.5.0
UsrAppInf 01.2.0

http://iprodeveloper.com/print/rpg-programming/apis-example-identifying-and-worki... 04-04-2014

APIs by Example: Identifying and Working with Service Program References Page 3 of 8

Bottom
F3=Exit Fll=Display hexadecimal signature Fl2=Cancel F17=Top

F18=Bottom

The above service program CBX001 supports two program signature levels, UsrAppInf_01.5.0,

which is the current level, and UsrAppInf_01.2.0, which is a previous level. As I will explain in the
following section, any program or service program referencing the CBX001 service program must
store one of the two signatures to be allowed to successfully activate the CBX001 service program.

Here's how it goes: When a program or service program referencing one or more subprocedures in a
(nother) service program is created, the binding process performed during program creation will link
the referenced service program to the program being created. This binding process will retrieve and
store the current signature of the service program into the program or service program being created.

When later the program or service program is activated, the system will attempt to check and verify
that any referenced service program still supports the stored signature. If this check fails, the
activation process will terminate, and an exception message will be sent to the caller. This facility is
conceptually very much like the record-level identifier used to verify that externally defined files have
not changed since program compilation time, whenever a program referencing the file is activated,
and generates a level check exception if a change is detected.

To examine what signature level a program or service program requires to successfully activate a
specific service program, you can use the Display Program (DSPPGM) and Display Service Program
(DSPSRVPGM) commands, respectively, specifying the DETAIL(*SRVPGM) keyword:

DSPPGM PGM (CBX101) DETAIL (*SRVPGM)

Again, you'll need to press F11 to see the character version of the signatures:

Display Program Information

Display 1 of 1

Program : CBX101 Library
QOGPL

Owner : CARSTEN

Program attribute . . : RPGLE

Detail : *SRVPGM

Type options, press Enter.

5=Display

http://iprodeveloper.com/print/rpg-programming/apis-example-identifying-and-worki... 04-04-2014

APIs by Example: Identifying and Working with Service Program References Page 4 of 8

Service
Opt Program Library Signature
CBX001 *LIBL UsrAppInf 01.5.0
ORNXTE QSYS QRNXTE
ORNXUTIL QSYS ORNXUTIL
QLEAWI QSYS a7 ¢pee—#y-1n8-A
Bottom
F3=Exit F4=Prompt Fll=Display hexadecimal signature
Fl2=Cancel
Fl17=Top F18=Bottom

If you're interested in reading more about the concept of service program signatures, be sure to use
the links I've included at the end of this article. They reference articles that discuss this topic
thoroughly

Anyway, at this point it is obviously possible to establish a cross reference between service programs
and the programs and service programs bound to it. It just requires a lot of manual work to inspect
all the relevant candidates for a reference to the service program in question, followed by a visual
verification of the individual signature levels.

If you therefore arrive at a situation in which you'll need to change a signature, remove a
subprocedure, reorganize and split up an extending service program, or something similarly
incompatible with maintaining a supported signature for existing programs or service programs--or
if you simply want to document and establish a cross reference report for specific service programs--
you could be looking at a challenging and time-consuming task.

That was the conclusion I arrived at when placed in a similar situation recently. So I decided to
instead spend the time building a tool allowing me to let the system do the hard work. The Work with
Service Program References (WRKSPGREF) command was the result of this effort, here's what the
command's prompt looks like:

Work with Service Program Ref (WRKSPGREF)

Type choices, press Enter.

Service program Name
Library *LIBL Name, *LIBL,
*CURLIB
Reference program Name, generic*,

http://iprodeveloper.com/print/rpg-programming/apis-example-identifying-and-worki... 04-04-2014

APIs by Example: Identifying and Working with Service Program References Page 5 of 8

*ALL

Library *LIBL Name, *LIBL,
*CURLIB...

Reference program type *ANY *ANY, *PGM,
*SRVPGM

Sort order *OBJLIB *OBJLIB, *TYPORJ,
*LIBORJ. ..

Output O . L. * *, *PRINT

You specify the service program whose references you want to identify and signature level check as
the primary parameter. Next you enter the generic name and library qualification of the relevant
selection of programs and service programs to retrieve and check. Using the special name value *ALL
and one of the special values available for library qualification you can potentially list and examine a
lot of programs and service programs. This could of course lead to an extensive use of system
resources, so if possible, narrow the field of candidates appropriately.

You also have the option of selecting only one type of programs for scrutiny as well as specify a
variety of sort orders for the produced list. Finally you can choose to print the program list instead of
displaying a work with panel. The available online help text offers more detail about the command
and its parameters.

Here's a list of the core APIs and steps involved in producing a list of programs and service programs
bound to a specific service program:

1. Call the Retrieve Service Program Information (QBNRSPGM) API to retrieve the current
signature of the specified service program.

2. Call the List Service Program Information (QBNLSPGM) API to retrieve a list of all signatures
currently supported by the specified service program.

3. For each program and service program identified by the command REFPGM selection criteria
list all bound service programs using the List ILE Program Information (QBNLPGMI) API and
List Service Program Information (QBNLSPGM) API, respectively.

4. For all programs and service programs referencing the service program in question match the
signature against:

a. The current signature of the service program
b. The list of all signatures supported by the service
program.

5. If a) produces a match the referencing program or service program is at a current signature
level with the service program.

6. If b) produces a match the referencing program or service program is at a previous signature
level with the service program (aka back-level).

7. If neither a) nor b) produces a match the referencing program or service program will generate
a signature violation (MCH4431) upon an attempted initiation of the program or service
program.

http://iprodeveloper.com/print/rpg-programming/apis-example-identifying-and-worki... 04-04-2014

APIs by Example: Identifying and Working with Service Program References

Page 6 of 8

To show you an example of the WRKSPGREF display panel and to visualize the effect of the above
algorithm, I ran the following command on my system:

WRKSPGREF SRVPGM (QGPL/CBX001)
REFPGM (QGPL/CBX*)

REFPGMTYP (*ANY)
ORDER (*OBJLIB)
OUTPUT (*)

The command returned the following program list display:

WYNDHAMW

12:21:23

Library

Type options,

reference

Program
Signature
Opt Name
State
CBX101
*CURRENT
CBX102
*BACKLEVEL
CBX103
*SIGVIOL

Bottom

2=Update 4=Delete

Work with Service Program References

Service program

Current signature

press Enter.

Library

QGPL

QGPL

QGPL

Parameters or command

CBX001

QGPL

UsrAppInf 01.5.0

5=Display

Type

*PGM

*PGM

*PGM

6=Print 7=Rename 8=P

Reference

Library

*LIBL

*LIBL

*LIBL

Reference

Signature

UsrAppInf
UsrAppInf

UsrAppInf

17-09-08

rogram

01.5.0

01.2.0

01.0.0

http://iprodeveloper.com/print/rpg-programming/apis-example-identifying-and-worki... 04-04-2014

APIs by Example: Identifying and Working with Service Program References Page 7 of 8

===>

F3=Exit F4=Prompt F5=Refresh F8=Display service program
F9=Retrieve
Fll=Display hexadecimal Fl2=Cancel F17=Top F18=Bottom

Using the function key F11 you can toggle between a hexadecimal signature format, a character
signature format, and a program description. Function key F8 allows you to run the Display Service
Program (DSPSRVPGM) command against the specified service program. A number of list options
are included to execute various commands against the found programs and service programs. The
list of available commands includes UPDPGM/UPDSRVPGM, DLTPGM/DLTSRVPGM,
DSPPGM/DSPSRVPGM, RNMOBJ, and DSPPGMREF. Again, you also have online help text
available to explain the list panel, columns, options and function keys.

This APIs by Example includes the following sources:

CBX196 -- RPGLE -- Work with Service Program References - CPP
CBX196E -- RPGLE -- Work with Service Program References - UIM Exit
Program

CBX196H -- PNLGRP -- Work with Service Program References - Help
CBX196P -- PNLGRP -- Work with Service Program References - Panel
Group

CBX196V -- RPGLE -- Work with Service Program References - VCP
CBX196X -- CMD -— Work with Service Program References

CBX196M -- CLP -— Work with Service Program References - Build
Command

To create all the above objects, compile and run CBX196M, following the instructions in the source
header. As always, you'll also find compilation instructions in the respective source headers.

Previously published articles explaining the concept of service program exports:

Barbara Morris: Maintainable Service Programs

http://systeminetwork.com/article/maintainable-service-programs

Scott Klement: Make a List of Your Exports
http://systeminetwork.com/node/61306

Simon Coulter: Service Program Signature Violations (Midrange Wiki)
http://wiki.midrange.com/index.php/Service Program Signature Violations

This article demonstrates the following Program and CL Command APIs:

Retrieve Program Information (QCLRPGMI) API:
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/gelrpgmi.htm

Retrieve Service Program Information (QBNRSPGM) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/apis/gbnrspgm.htm

http://iprodeveloper.com/print/rpg-programming/apis-example-identifying-and-worki... 04-04-2014

APIs by Example: Identifying and Working with Service Program References Page 8 of 8

List ILE Program Information (QBNLPGMI) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/apis/gbnlpgmi.htm

List Service Program Information (QBNLSPGM) API:
http://publib.boulder.ibm.com/infocenter/iseries/vsr4/topic/apis/gbnlspgm.htm

You can retrieve the source code for this API example from:
http://www.pentontech.com/IBMContent/Documents/article/57221 669 WrkSpgRef.zip.

Source URL: http://iprodeveloper.com/rpg-programming/apis-example-identifying-and-working-

service-program-references

http://iprodeveloper.com/print/rpg-programming/apis-example-identifying-and-worki... 04-04-2014

