
REXX for CL Programmers!

TUG Mar 20, 2013
Mike Warkentin
Managing Director R&D
mwarkentin@rocketsoftware.com
(781) 577-4344

2

• What is REXX

• How Does it Differ from CL

• When to Use it

• Basic Constructs

• Creating and Running REXX Programs

• Variables

• REXX Expressions

• REXX Instructions

• Some Examples

AGENDA

3

REstructured eXtended eXecutor language

• Designed by Michael Cowlishaw of IBM UK
• “Own time project” – Mar 20 1979 – Mid 1982
• “REXX is a procedural language that allows programs and

algorithms to be written in a clear and structured way”
• Built to replace EXEC and EXEC2
• First Public Exposure – SHARE 56, Texas 1981

Where can I run REXX?

• VM/CMS, VM/CGS, MVS TSO/E, AS/400, OS/2, VSE/ESA, AIX,
CICS/ESA, PC DOS

• IBM has also provided versions for Novell Netware, Windows, JAVA
& LINUX

What is REXX?

4

Where else can I run REXX (non IBM)
• PC/DOS by Charles Daney in 1984/85

• Atari, Amiga, Unix, Solaris, DEC, Windows, WinCE, Pocket
PC, MS-DOS, Palm OS, QNX, OS/2, Linux, BeOS, EPOC32,
AtheOS, OpenVMS, OpenEdition, Macintosh, MacOS/X,
ANDROID, iOS (jail brake)

But there is more…
• Windows and Linux opensource ports – Regina &

REXX/imc

• NetRexx (compiles to JAVA byte code)

• ObjectRexx – OO version

What is REXX?

5

Where can

REXX Run?

Android Smartphones

• Download Scripting Layer for Android at:

http://code.google.com/p/android-scripting/

• Download Brexx.apk at:

http://pceet075.cern.ch/bnv/brexx/

6

Where can

REXX Run?

NOTE: No way to run

on iOS (Ipad or

iPhone) without

a jailbreak!

7

Where can

REXX Run (1990s)?

8

REXX is: an interpreted language
• It’s not compiled like CL or RPG

• When REXX pgm runs, language processor directly interprets
each statement

• Can be more resource intensive then compiled programs

REXX is: free format
• No line numbers required

• Instructions can span multiple lines or many instructions on
one line

• Begin in any column

• Skip lines

• Type in uppercase, lowercase, mixed, REXX doesn’t care!

• Could be messy!

What is REXX continued…

9

REXX is: string based
• All data is a character string

• No need to declare the variable type

• Strong parsing functions for assigning variables to/from
different input/output sources

REXX:
• Is ANSI compliant, SAA, portable across platforms

• Simple to use and traceable

• Contains built in functions for processing, searching &
comparison ops for text and numbers, formatting and
arithmetic operations

What is REXX continued…

10

Classic Rexx
• The original procedural language developed by IBM

• Six free classic interpreters available

• Bundled with many operating systems like VM/SP, MVS, OS/2, PC
DOS, Windows NT, IBM i, System z etc.

• Used as a “glue language” or macro language and primary
scripting language in many OSes

• http://www.rexxla.org

Variants of REXX

11

NetRexx

• Open source variant that that runs on a JAVA Virtual Machine
• Both compiled and interpretive
• Additional constructs to support Object Oriented Programing
• Develop applets, applications, servlets, classes and beans
• Originally IBM owned – now owned by Rexx Language Association
• http://www.netrexx.org/

Object REXX (or Open Object Rexx)

• Object oriented scripting language initially built by IBM for OS/2
• Includes classes, messaging, single and multiple inheritance,

encapsulation, data hiding, polymorphism etc.
• Large class library
• Available for multiple platforms like Linux, Solaris, Windows
• Open source and upwardly compatible with Classic Rexx
• http://sourceforge.net/projects/oorexx/

Variants of REXX

12

� Regina Rexx
� Most widely used

� http://regina-rexx.sourceforge.net/

� Reginald
� Enhanced and extended for Windows

� http://home.roadrunner.com/~jgglatt/rexx/win32/rxusrw32.htm

� R4 and Roo
� Also extended for Windows

� http://www.kilowattsoftware.com/

� Brexx
� Very fast lightweight Rexx for PDAs, smartphones, embedded apps etc

� http://sourceforge.net/projects/brexx/

� Rexx/imc
� For Linux, Unix and BSD platforms

� http://www.cs.ox.ac.uk/people/ian.collier/Rexx/rexximc.html

Many interpreters available

too…

13

REXX is:

• Popular …over 416,000 Google Hits on REXX!

• Long running…34 years old on March 20th 2004

REXX is this:

/* Count to ten and add the numbers up */

sum = 0

do count = 1 to 10

say count

sum = sum + count

end

say "The sum of these numbers is" sum"."

What is REXX continued…

14

REXX is:

• According to John Dvorak in his article for ZDNET Get
REXX – It Pays

“…it’s apparent that REXX is something of a Swiss Army
Knife among programming languages”

What is REXX continued…

15

CL

• Compiled

• Handle up to 5 files at i5OS

• Lousy at string manipulations

• IBM i only

• Variables must be declared
and have a type

• GOTO

• Command prompting, syntax
checking standard on i

REXX

• Interpreted

• No file handling capabilities at all!

• The string expert – it’s all strings!

• Runs almost anywhere

• Variables are all strings – no type
and no declaration

• NO GOTO

• No command prompting, syntax
checking on i BUT…

How does it differ from CL?

16

Prompting looks like this in

REXX

17

� If you have lots of CL commands in the REXX source
member…

Now I can
prompt all
the CL
commands
I like!!

Just
remember
to change
it back

But you can do

this…

18

In WDSc I can PF4 on

DSPLIB

19

So when should I use CL

vs. REXX vs. RPG…

� If you need to manipulate strings or
want an interactive response with the
end user
…use REXX

� If you need to manipulate files, write
reports or do pretty screens
…use RPG

� If you need to do a little of everything

…use CL

20

For example…
� A program to find the first sentence (delimited by a period)

in a 50 char variable &INPUT and place the remaining text
in a second variable &REMAINDER looks like:

DCL &INPUT *CHAR LEN(50)
DCL &REMAINDER *CHAR LEN(50)
DCL &X *DEC LEN(2 0) VALUE(1)
DCL &L *DEC LEN(2 0) */remaining length */

SCAN: IF ((%SUBSTRING(&INPUT &X 1) *NE ‘.’) *AND +
(&X *LT 50)) THEN(DO)
CHGVAR &X (&X + 1)
GOTO SCAN

ENDDO
CHGVAR VAR(&L) VALUE(50 - &X)
CHGVAR VAR(&X) VALUE(&X + 1)
CHGVAR VAR(&REMAINDER) VALUE(%SUBSTRING(&INPUT &X &L))

21

For example…

� Or in REXX…

parse var input . ‘.’ remainder

Samples provided by

REXX/400 Programmers Guide V4R1

22

Or even…
� A program to extract three words, with leading and trailing

blanks removed from a 30 char field and assign them to
variables &LIB, &FILE and &MBR:

DCL &INPUT *CHAR LEN(30)

DCL &LIB *CHAR LEN(30)
DCL &FILE *CHAR LEN(10)
DCL &MBR *CHAR LEN(10)
DCL &S *DEC LEN(2 0) /* Starting position */
DCL &E *DEC LEN(2 0) /* Ending position */
DCL &L *DEC LEN(2 0) /* Length of parameter */

CHGVAR &S 1 */Remove leading blanks for &LIB */

LIBSTR: IF (%SST(&LIB &S 1) *EQ ‘ ’) THEN(DO)
CHGVAR &S (&S + 1)

GOTO LIBSTR
ENDDO
CHGVAR &E (&S + 1) /* Find end of &LIB */

LIBEND: IF (%SST(&LIB &E 1) *NE ‘ ’) THEN(DO)
CHGVAR &E (&E + 1)

GOTO LIBEND
ENDDO
CHGVAR &L (&E - &S)
CHGVAR &LIB (%SST(&LIB &S &L))

23

CHGVAR &S (&E + 1) */ Remove leading blanks for &FILE */

FILSTR: IF (%SST(&FILE &S 1) *EQ ‘ ’) THEN(DO)
CHGVAR &S (&S + 1)

GOTO FILSTR
ENDDO
CHGVAR &E (&S + 1) /* Find end of &FILE */

FILEND: IF (%SST(&FILE &E 1) *NE ‘ ’) THEN(DO)
CHGVAR &E (&E + 1)

GOTO FILEND
ENDDO
CHGVAR &L (&E - &S)
CHGVAR &FILE (%SST(&FILE &S &L))

CHGVAR &S (&E + 1) */ Remove leading blanks for &MBR */
MBRSTR: IF (%SST(&MBR &S 1) *EQ ‘ ’) THEN(DO)

CHGVAR &S (&S + 1)
GOTO MBRSTR

ENDDO
CHGVAR &E (&S + 1) /* Find end of &MBR */

MBREND: IF (%SST(&MBR &E 1) *NE ‘ ’) THEN(DO)
CHGVAR &E (&E + 1)

GOTO MBREND
ENDDO
CHGVAR &L (&E - &S)
CHGVAR &MBR (%SST(&MBR &S &L))

Continuing…

24

Compared to…

� Or in REXX…

parse var input lib file mbr

Samples provided by

REXX/400 Programmers Guide V4R1

25

� Source statements are called “clauses” and consist
of:
� Null clauses
� Assignments
� Instructions
� Labels
� Commands

� Clauses are made up of “tokens”
� Character strings delimited by blanks
� Scanned left to right

� Instructions recognized
� Comments removed
� Multiple blanks converted to single blanks

BASIC REXX Constructs

26

Examples of constructs

Null clauses

Comment

Assignments

27

Label

Instructions

Examples of constructs

Command

Continuation

28

Internal Routine

Examples of constructs

29

Chklogins pgm
/* Check the log for Invalid Login attempts */

Call clearscreen

/* Trace ?R */

today =DATE('U')

dayoweek = DATE('W')

month = SUBSTR(today,1,2)

day = SUBSTR(today,4,2)

year = SUBSTR(today,7,2)

startday = day - 1

If dayoweek = 'Monday' then startday = day - 2

If startday = 0 then do

startday = 30

month = month - 1

end

Subroutine

Trace function

30

Chklogins pgm

RUNIT:

repstart = month"/"startday"/"year

say "running report with startdate:"repstart

Do linefeed = 1 to 13

Say " "

End

Say " Please wait while log is being searched."

Say " "

Say " "

"DSPLOG PERIOD((*AVAIL '"repstart"')) MSGID(CPF1393 CPF2234)"

/* To include Job starts add CPF1124 */

/* To include Job ends add CPF1164 */

EXIT

Special Function

to force CR

31

Chklogins pgm

clearscreen:

Do linefeed = 1 to 22

Say " "

End

Return

Subroutine defined

32

�Create as source physical files (QREXSRC in
QGPL)

�Use SEU or WDSc

�Source type can be REXX but not required

�Not program objects (no compiles)

� To run use…
� STRREXPRC command – pass parms

� Option 16 in WRKMBRPDM

� Call QREXX API

Creating and Running REXX

33

Let’s Run It

34

The result…

35

The result…

36

The result…

37

�Three files for input and output:

File Used By Default in
Interactive

Default in
Batch

STDIN PULL Keyboard QINLINE

STDOUT SAY Display QPRINT

STDERR TRACE Display QPRINT

REXX Input & Output

38

A simple example using PULL & SAY…

/* Canadian Election 2015*/

call clearscreen

SAY "Welcome to the 2015 Canadian Election – PC, Liberal or NDP?”

PULL who

IF who \= “PC" THEN

DO UNTIL who = “PC"

SAY “Thank you for voting Conservative!"

PULL who

END

SAY “You have successfully voted for Harper!"

EXIT

clearscreen:

Do linefeed = 1 to 22

Say " "

End

Return

Must be UC

39

When it is run… PULL waits for

a response from STDIN

40

When the correct response is

given – the program ends

41

There are some who say this is how

the Liberal Leadership race will go…

42

REXX Variables & Constants

�Actually called “symbols” in REXX

�Up to 250 characters in length

�Beginning with digit (0-9) or . => constant
� Cannot be used as variables

� Examples :
57

.0095

3.1e7 (or 31,000,000)

�Beginning with A-Z, a-z, !, ?, _ => variable
� All treated as uppercase so mikey, MiKeY or

MIKEY are all MIKEY.

43

�You don’t declare variables – just assign them
� Symbol = expression

� Expression can be a number, string or calculation

� Examples:
� total = price + tax

� total = 0

� data = “I love my cat”

� data = substr(“I love my cat”,2,4)

� NOTE: If not assigned – value is symbol in uppercase!

REXX Variables & Constants

44

� Can also be pulled from user input (interactively)
� Say “Give me two names separated by a space, then hit

Enter”

� Pull firstname secondname

� Entered as arguments
� ARG first second

� SAY “The total is” first + second

� To run STRREXPRC SRCFILE(QGPL/QREXSRC) SRCMBR(SUM)
PARM(‘1 2’)

REXX Variables & Constants

45

� A variable containing at least one ‘.’ and one other
character following the period
� Cannot begin with a digit or ‘.’

� If only one ‘.’ it cannot be the last character

� “Stem” = everything up to first ‘.’

� “Tail” = everything else

� Examples:
� day.1 = “Sunday” /* day is the stem, 1 is the tail */

� Region.branch.office /* region is stem, branch.office is tail */

� Also called compound symbol

Compound Variables

46

Using compound variables for

arrays – DAYSINMON pgm

/* Get the number of days in the month */

day.jan = 31

day.feb = 28

day.mar = 31

day.apr = 30

day.may = 31

day.jun = 30

day.jul = 31

day.aug = 31

day.sep = 30

day.oct = 31

day.nov = 30

day.dec = 31

Say “Please enter a three character abbreviation for the month”

Pull month

Say “The month of “ month “has “ day.month “ days!”

47

Using compound variables

for arrays – running it…

This is good

Note: converted

to UC

Variable not

assigned

48

Using compound variables for

arrays – Let’s fix it…

/* Get the number of days in the month */

Call clearscreen

day.jan = 31
day.feb = 28
day.mar = 31
day.apr = 30
day.may = 31
day.jun = 30
day.jul = 31
day.aug = 31
day.sep = 30
day.oct = 31
day.nov = 30
day.dec = 31

/* Set valid months list */
valid_month_list = 'JAN FEB MAR APR MAY JUN JUL AUG SEP',

'OCT NOV DEC'

Say "Please enter a three character month abbreviation"

Compound Variables

49

Using compound variables for

arrays – Let’s fix it…

Parse Upper Pull month

valid = POS(month,valid_month_list)

do while valid =0

Say "Sorry but invalid month. Try again"

Parse Upper Pull month

valid = POS(month,valid_month_list)

END

Say "The month of" month "has" day.month "days!"

EXIT

clearscreen:

Do linefeed = 1 to 22

Say " "

End

Return

Function to check starting position
of one string in another

50

Now let’s run it again…

51

� Indicated by clauses called labels (just like CL)

� Can be internal, built-in or external routine

� Returns a single result string

� Subroutines
� Run when named on a CALL instruction

� No () required to pass parameters

� Up to 20 parameters allowed

� Return value is assigned to variable called “result” and
may or may not be passed

� Uses ARG (special function) to access parms passed to
routine or to main REXX pgm

Functions and Subroutines

52

� Functions
� No call required

� Use () to pass parameters

� Up to 20 parameters allowed

� Do not touch the “result” variable

Functions and Subroutines

53

Examples of Functions and

Subroutines

/* Here is a function */

numone = 5

numtwo = 10

Say ‘The sum of’ numone ‘and’ numtwo ‘is’ Sum(numone, numtwo)

EXIT

Sum:

Total = ARG(1) + ARG(2)

RETURN total

The function

(returns a single

result)

This is the internal routine

ARG is a special built-in function to

Access the parms passed

54

Examples of Functions and

Subroutines
/* Here is a subroutine */

numone = 5

numtwo = 10

CALL Sum numone, numtwo

Say ‘The sum of’ numone ‘and’ numtwo ‘is’ result

EXIT

Sum:

Total = ARG(1) + ARG(2)

RETURN total

The subroutine

(returns a single

result assigned to

variable “result”)

This is the internal routine

ARG is a special built-in function to

Access the parms passed

55

REXX Built-in Functions
ABBREV (Abbreviation)

ABS (Absolute Value)

ADDRESS

ARG

BITAND (Bit by Bit AND)

BITOR (Bit by Bit OR)

BITXOR (Bit by Bit Exclusive OR)

B2X (Binary to Hexadecimal)

CENTER/CENTRE

COMPARE

CONDITION

COPIES

C2D (Character to Decimal)

C2X (Character to Hexidecimal)

DATATYPE

DATE

DBCS

DELSTR (Delete String)

DELWORD (Delete Word)

DIGITS

D2C (Decimal to Character)

D2H (Decimal to
Hexadecimal)

ERRORTEXT

FORM

FORMAT

FUZZ

INSERT

LASTPOS (Last Position)

LEFT

LENGTH

56

REXX Built-in Functions
MAX (Maximum)

MIN (Minimum)

OVERLAY

POS (Position)

QUEUED

RANDOM

REVERSE

RIGHT

SETMSGRC (Set Message Return
Code)

SIGN

SOURCELINE

SPACE

STRIP

SUBSTR (Substring)

SUBWORD

SYMBOL

TIME

TRACE

TRANSLATE

TRUNC (Truncate)

VALUE

VERIFY

WORD

WORDINDEX

WORDLENGTH

WORDPOS (Word Position)

WORDS

XRANGE

X2B (Hexidecimal to Binary)

X2C (Hexidecimal to
Character)

X2D (Hexidecimal to
Decimal)

57

� Used to temporarily hold data

� Data available as:
� Lines (character string of variable length up to 32,767 chars)

� Buffers (subgrouping of lines is a queue)

� Exists when job is started and persists until job ends

� All programs running under same job have access
to the queue

File Handling – The External

Data Queue

58

� Place line at front of current buffer (QUEUE)

� Place a line at end of current buffer (PUSH)

� Retrieve a line from front of queue (PULL)

� Determine number of lines in a queue (QUEUED)

� Create, remove a queue buffer (ADDREXBUF or
RMVREXBUF)

What can you do with a

queue?

59

Example

Get the library,

file name, mbr and

number of records

from the command

60

Example

Pull data from the

File not input screen

PARSE LINEIN pulls

data from STDIN even

If there is a line in the

External queue

61

Example

Now use QUEUE to add

What is in data to the

External Queue

62

Example

QUEUED returns

Number of lines in the

External queue

63

CPYFTOREXQ Command

64

Compile it…

65

Call it…

66

Run the REXX …

67

� Yes you have access to SQL in REXX!

� Need to specify the SQL command environment
� ADDRESS EXECSQL

� Typical command:
� ADDRESS EXECSQL 'INSERT INTO DB/TABLE VALUES(789)'

� Check whether SQL call was successful in REXX RC
variable
� Also display SQLCODE and SQLSTATE from the SQLCA (SQL

Communications Area)

� For full details see
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/in
dex.jsp?topic=%2Frzajp%2Frzajprexx.htm

File Handling – Using SQL

68

Small example: (Create the table)
ADDRESS '*EXECSQL'

EXECSQL,

'SET OPTION COMMIT = *NC'

tablespec = lib"/INVENTORY",

"(ITEM_NUMBER CHAR(6) NOT NULL, ",

"ITEM_NAME VARCHAR(20) NOT NULL WITH DEFAULT '***UNKNOWN***', ",

"UNIT_COST DECIMAL(8,2) NOT NULL WITH DEFAULT, ",

"QUANTITY_ON_HAND SMALLINT DEFAULT NULL, ",

"LAST_ORDER_DATE DATE, ",

"ORDER_QUANTITY SMALLINT DEFAULT 20, ",

"PRIMARY KEY(ITEM_NUMBER)) "

ADDRESS '*EXECSQL'

EXECSQL,

'CREATE TABLE' tablespec

SAY lib"/INVENTORY CREATED"

SAY “SQLCODE =“ SQLCODE

SAY “SQLSTATE =“ SQLSTATE

69

Small example: (Populate it)
/* Data for Inventory Table */

inum.1 = '153047';inam.1 = 'Pencils,red';ucost.1 = 10.00;qoh.1 = 25;

inum.2 = '229740';inam.2 = 'Lined tablets';ucost.2 = 1.50;qoh.2 = 120;

inum.3 = '544931';inam.3 = 'UNKNOWN ';ucost.3 = 5.00;qoh.3 = 50;

inum.4 = '303476';inam.4 = 'Paper Clips ';ucost.4 = 2.00;qoh.4 = 100;

inum.5 = '559343';inam.5 = 'Envelopes, legal';ucost.5 = 3.00;qoh.5 = 500;

ADDRESS '*EXECSQL'

Do datagroups

Do x = 1 to 5

insert_stmt = lib"/INVENTORY ",

"(ITEM_NUMBER,",

"ITEM_NAME,",

"UNIT_COST,",

"QUANTITY_ON_HAND)",

"VALUES('"inum.x"',",

"'"inam.x"',",

ucost.x",",

qoh.x

EXECSQL,

'INSERT INTO' insert_stmt

END

END

70

Some examples (optional)

COMPARE(string1,string2,pad)

returns 0 if a match else

position of first character that does not match

pad shorter string with pad if necessary

COMPARE(‘Common’,’Common’) =>

COMPARE(‘Common’,’Code’) =>

COMPARE(‘Common ‘,’Common’,’ ‘) =>

COMPARE(‘mylib--- ‘,’mylib’,’-’) =>

COMPARE(‘Common111,’Common’,’1’) =>

0

3

0

9

0

71
71

Here is a simple way to test this…

/* Compare and display */

VALUE=COMPARE('COMMON111','COMMON','1')

EXPR="COMPARE('COMMON111','COMMON','1')"

SAY "Value returned by " EXPR "is" VALUE

72

DATATYPE(string,type)

returns NUM if a valid number

else returns CHAR

If type specified, returns 1 if string matches type

else returns 0

Valid types:

Alphanumeric

Binary

C (Mixed SBSC/DBSC)

Dbcs

Lowercase

Mixed case

Number

Symbol

Uppercase

Whole number

heXadecimal)

Some examples (optional)

73

DATATYPE(string,type)

returns NUM if a valid number

else returns CHAR

If type specified, returns 1 if string matches type

else returns 0

DATATYPE(‘ 15 ‘) =>

DATATYPE(‘123*’) =>

DATATYPE(‘125.7’,’N’) =>

DATATYPE(‘125.7,’W’) =>

DATATYPE(‘Mikey’,’M’) =>

DATATYPE(‘BC d3’,’X’) =>

‘NUM’

‘CHAR’

1

0

1

1

Some examples (optional)

74

Some examples (optional)

DATE(option)

returns local date in format dd mon yyyy

If option specified, returns local date in

format specified by option

Valid options:

Base (number of days minus today since 1 January 0001 in format

dddddd)

Days (number of days including today so far this year in format ddd

European (current date in format dd/mm/yy)

Month (full English name of current month i.e. June)

Normal (the default dd mon yyyy)

Ordered (format yy/mm/dd – suitable for sorting)

Standard (format yyyymmdd – suitable for sorting)

Usa (format mm/dd/yy)

Weekday (returns English name of day of the week i.e. Monday)

75

DATE Function running

76

INSERT(new,target,n,length,pad)

inserts new padded with pad or truncated - to length

length into target after nth character

defaults: n=0, length = length of new, pad = ‘ ‘

INSERT(‘ ‘,’SimonCowell’,5) =>

INSERT(‘789’,’xyz’,5,6,’+’) =>

INSERT(‘789’,’xyz’,5,6) =>

INSERT(‘789’,xyz’) =>

INSERT(‘789’,’xyz’,,5,’*’) =>

‘Simon Cowell’
‘xyz++789+++‘

‘xyz 789 ‘

‘789xyz’

‘789**xyz’

Some examples (optional)

77

LASTPOS(needle,haystack,start)

returns position of last occurrence of needle in

haystack, zero if needle is null string or not found

defaults: backward scan

LASTPOS(‘ ‘,’this is really weird’) =>

LASTPOS(‘ ’,’thisisreallywierd’) =>

LASTPOS(‘45’,’12345’) =>

LASTPOS(‘ ’,’this is really weird’,7) =>

15
0

4

5

Some examples (optional)

78

MAX(number)

returns maximum in a list of numbers

MIN(number)

returns minimum in a list of numbers

Maximum of 20 numbers – you can nest if you need
more!

MAX(12,6,7,9) =>

MAX(-7,-5,-6.3,-15) =>

MIN(100,25,-6,10) =>

MIN(21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,MIN(2,1)) =>

12
-5

-6

1

Some examples (optional)

79

RANDOM(min,max,seed)

� generates a random positive whole number between min and max

� seed provides for reproducible random number

� Defaults: min=0, max=999, max-min<100000, seed<999999999

RANDOM() =>

RANDOM(16,57) =>

RANDOM(1) =>

RANDOM(,,63782) =>

42?

33?

1?

567?

Some examples (optional)

80

/* Random number generator */

sequence = RANDOM(1,100,80)

do 5

sequence = sequence

RANDOM(1,100)

end

SAY sequence

Random function running

81

TIME(option)

returns local time in 24 hour clock format hh:mm:ss

If option specified, returns local time in

format specified by option

Valid options:

Civil (current time in format hh:mmxx)

Elapsed (number of seconds.microseconds since elapsed clock reset)

Hours (number of hours since midnight in format hh)

Long (current time in format hh:mm:ss.uuuuuu)

Minutes (number of minutes since midnight in format mmmm)

Normal (the default hh:mm:ss)

Reset (returns same as Elapsed and resets elapsed clock to zero)

Seconds (number of seconds since midnight in format sssss)

Some examples (optional)

82

TIME function running

83

A Real World Use

84

• The REXX Language Association

www.rexxla.org

Annual International REXX Symposium

May 5-8 Comfort Suites Raleigh/Durham Airport

• Wikipedia (the free Web Encyclopedia)

http://en.wikipedia.org/wiki/REXX

• The IBM REXX Language Page

maintained by Uwe Berger at IBM Germany

http://www-01.ibm.com/software/awdtools/rexx/

• The REXX Language –A Practical Approach to Programming (TRL-2)

THE book by Michael Cowlishaw IBSN 0-13-780651-5

• Regina – open source REXX

http://regina-rexx.sourceforge.net

• IBM Info Centre

REXX/400 Programmer’s Guide SC41-5728

REXX/400 Reference SC41-5729

Additional References

Thank you!

REXX for CL Programmers!

TUG Mar 20, 2013
Mike Warkentin
Managing Director R&D
mwarkentin@rocketsoftware.com
(781) 577-4344

